Article contents
On a time-dependent motion of a rotating fluid
Published online by Cambridge University Press: 28 March 2006
Abstract
We consider here the manner in which the state of rigid rotation of a contained viscous fluid is established. It is found that the motion consists of three distinct phases, namely, the development of the Ekman layer, the inviscid fluid spin-up, and the viscous decay of residual oscillations. The Ekman layer plays the significant role in the transient process by inducing a small circulatory secondary flow. Low angular momentum fluid entering the layer from the geostrophic interior is replaced by fluid with greater angular momentum convected inward to conserve mass. The rotational velocity in the interior increases as a consequence of conservation of angular momentum, and the vorticity is increased through the stretching of vortex lines. The spin-up time is $T = (L^2|v \Omega)^{\frac {1}{2}}.$ Boundary-layer theory is used to study the phenomenon in the case of general axially symmetric container configuration and explicit formulas are deduced which exhibit the effect of geometry in spin-up. The special case of cylindrical side walls is also investigated by this method. The results of very simple experiments confirm the theoretical predictions.
- Type
- Research Article
- Information
- Copyright
- © 1963 Cambridge University Press
References
- 363
- Cited by