Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-08T05:32:23.811Z Has data issue: false hasContentIssue false

A numerical study of turbulence transitions in convective flow

Published online by Cambridge University Press:  29 March 2006

Bart J. Daly
Affiliation:
Los Alamos Scientific Laboratory, University of California

Abstract

A turbulence representation, consisting of a generalized set of transport equations for the Reynolds stress tensor and the turbulence energy decay rate, is applied to the study of convective heat transport between parallel plates at moderate Rayleigh numbers, 5 × 103Ra ≤ 6·4 × 105. A series of heat flux transitions, in good agreement with those observed experimentally, is detect, ed in this study and found to correlate with changes in the turbulence structure. In the order of increasing Rayleigh number these structural changes correspond to: the transition from laminar to turbulent flow, the transition from low to locally high intensity turbulence, the transition to uniformly high intensity turbulence, and the transition from a buoyancy dominated turbulence to a shear dominated turbulence. An analysis is made of the effect of each of these transitions on the mechanism for heat transfer between the plates.

Type
Research Article
Copyright
© 1974 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amsden, A. A. & Harlow F. H.1970a University of California, Los Alamos Sci. Lab. Rep. LA. 4370.
Ansden, A. A. & Harlow F. H.1970b J. Comp. Phys. 6, 322.
Batchelor, G. K. & Townsend A. A.1948 Proc. Roy. Soc. A 194, 527.
Chandrasekhar S.1961 Hydrodynamic and Hydromagnetic Stability. Oxford University Press.
Chorin A. J.1966 New York University, A.E.C. Research and Development Rep. NYO-1480-61.
Chorin A. J.New York University, A.E.C. Research and Development Rep. NYO 1480.61
Chorin, 1968 New York University, A.E.C. Research and Development Rep. NYO-1480.61.
Chorin A. J.1968 Math. Comp. 22, 745.
Chou P. Y.1945a Quart. Appl. Math. 3, 38.
Chou P. Y.1945b Quart. Appl. Math. 3, 198.
Crow S. C.1968 J. Fluid Mech. 33, 1.
Daly, B. J. & Harlow F. H.1970 Phys. Fluids, 13, 2634.
Daly, B. J. & Pracht W. E.1968 Phys. Fluids, 11, 15.
Deardorff, J. W. & Willis G. E.1965 J. Fluid Mech. 23, 337.
Deardorff, J. W. & Willis G. E.1967 J. Fluid Mech. 28, 675.
Harlow, F. H. & Hirt C. W.1969 University of California, Los Alamos Sci. Lab. Rep. LA. 4247.
Harlow, F. H. & Romero N. C.1959 University of California, Los Alamos Sci. Lab. Rep. LA. 4247.
Hinze J. C.1959 Turbulence. McGraw-Hill.
Hirt C. W.1968 J. Comp. Phys. 2, 339.
Krishnamurti R.1970a J. Fluid Mech. 42, 295.
Krishnamurti R.1970b J. Fluid Mech. 42, 309.
Lipps, F. B. & Somerville R. C. J.1971 Phys. Fluids, 14, 759.
Lumley J. L.1970 J. Fluid Mech. 41, 413.
Malkus W. V. R.1954 Proc. Roy. Soc. A225, 185.
Mull, W. & Reiher H.1930 Beih. Gesundh.-Ingr. (1), 28, 1.
Nakayama P. I.1972 Ph.D. thesis, Purdue University.
Plows W. H.1968 Phys. Fluids, 11, 1593.
Rodi W.1971 Imperial College (London) Rep. TM/TN/A/14.
Rossby H. T.1966 Ph.D. thesis, Massachusetts Institute of Technology.
Rotta J.1951 Z. Phys. 129, 547.
Silveston P. L.1958 Forsch. Geb. IngWes. B24, 29, 59.
Willis, G. E. & Deardorff J. W.1967 Phys. Fluids, 10, 1861.
Willis, G. E. & Deardorff J. W.1970 J. Fluid Mech. 44, 661.
Willis G. E., Deardorff, J. W. & Somerville, R. C. J. Rep. 1971 NCAR Manuscipt no. 71–154.