Hostname: page-component-5cf477f64f-mgq6s Total loading time: 0 Render date: 2025-04-07T03:49:30.413Z Has data issue: false hasContentIssue false

Numerical study of the supersonic impinging jet oscillation and tone generation mechanism

Published online by Cambridge University Press:  17 March 2025

Zhenling Jia
Affiliation:
1School of Energy and Power Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing, PR China
Junhui Gao*
Affiliation:
1School of Energy and Power Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing, PR China
*
Corresponding author: Junhui Gao, gaojhui@buaa.edu.cn

Abstract

Supersonic impinging tones have been attracting significant interest because high-intensity discrete-frequency tones pose substantial risks to structural safety in applications such as rocket launch and recovery, and space vehicle attitude adjustment. However, various issues remain to be addressed regarding the jet oscillation and tone generation mechanism. In this study, a numerical simulation of the supersonic impinging jet with a nozzle pressure ratio of 4.03 and an impingement distance of 2.08 times the nozzle exit diameter is conducted. The results show good consistency with the reference data by other researchers. A phase-locked averaging analysis of 2960 flow field snapshots is employed to investigate jet structure oscillation dynamics and the tone generation mechanism. The phase-locked averaged images reveal that the pressure variation induced by Kelvin–Helmholtz vortices as they pass through the reflected shock results in the periodic motions of the reflected shock and Mach disk. The periodically oscillating Mach disk generates high-pressure fluid masses driving recirculation bubbles through a cyclic ‘compression–generation–merging’ oscillation. The streamline oscillation and sound-ray analyses reveal there are two distinct tone source regions: the impinging zone and the wall jet region. Consequently, it is proposed that vortex collapse in conjunction with wall jet oscillations coexist to generate the tone. According to the directivity, the tone emitted from the wall jet source region is believed to contribute to the feedback loop. These findings collectively contribute to an improved understanding of the jet plume oscillation and tone generation mechanisms of the supersonic impinging jet.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

André, B. 2012 Etude Expérimentale de l’Effet du Vol sur le Bruit de Choc de Jets Supersoniques Sous-Détendus. Ph.D. Dissertation, École Centrale de Lyon, Écully, France.Google Scholar
Back, L.H. & Sarohia, V. 1978 Pressure pulsations on a flat plate normal to an underexpanded supersonic jet. AIAA J. 16 (6), 634636.CrossRefGoogle Scholar
Berland, J., Bogey, C., Marsden, O. & Bailly, C. 2007 High-order, low dispersive and low dissipative explicit schemes for multiple-scale and boundary problems. J. Comput. Phys. 224 (2), 637662.CrossRefGoogle Scholar
Bogey, C. & Gojon, R. 2017 Feedback loop and upwind-propagating waves in ideally expanded supersonic impinging round jets. J. Fluid Mech. 823, 562591.CrossRefGoogle Scholar
Brehm, C., Housman, J.A. & Kiris, C.C. 2016 Noise generation mechanisms for a supersonic jet impinging on an inclined plate. J. Fluid Mech. 797, 802850.CrossRefGoogle Scholar
Carling, J.C. & Hunt, B.L. 1974 The near wall jet of a normally impinging, uniform, axisymmetric, supersonic jet. J. Fluid Mech. 66 (1), 159176.CrossRefGoogle Scholar
Cui, W., Xu, J., Wang, B., Zhang, P. & Qin, Q. 2021 The initial flow structures and oscillations of an underexpanded impinging jet. Aerosp. Sci. Technol. 115, 106740.CrossRefGoogle Scholar
Dauptain, A., Cuenot, B. & Gicquel, L.Y.M. 2010 Large eddy simulation of stable supersonic jet impinging on flat plate. AIAA J. 48 (10), 23252338.CrossRefGoogle Scholar
Dauptain, A., Gicquel, L.Y.M. & Moreau, S. 2012 Large eddy simulation of supersonic impinging jets. AIAA J. 50 (7), 15601574.CrossRefGoogle Scholar
Donaldson, C.D. & Snedeker, R.S. 1971 A study of free jet impingement. part 1. mean properties of free and impinging jets. J. Fluid Mech. 45 (2), 281.CrossRefGoogle Scholar
Edgington-Mitchell, D. 2019 Aeroacoustic resonance and self-excitation in screeching and impinging supersonic jets - a review. Intl J. Aeroacoust. 18 (2-3), 118188.CrossRefGoogle Scholar
Ginzburg, I.P., Semiletenko, B.G., Terpigor’ev, V.S. & Uskov, V.N. 1970 Some singularities of supersonic underexpanded jet interaction with a plane obstacle. J. Engng Phys. 19 (3), 10811084.CrossRefGoogle Scholar
Gojon, R. & Bogey, C. 2017 Flow structure oscillations and tone production in underexpanded impinging round jets. AIAA J. 55 (6), 17921805.CrossRefGoogle Scholar
Gojon, R., Bogey, C. & Marsden, O. 2015 Large-eddy simulation of underexpanded round jets impinging on a flat plate 4 to 9 radii downstream from the nozzle. In 21st AIAA/CEAS Aeroacoustics Conference. AIAA Paper 2015-2210. AIAA.CrossRefGoogle Scholar
Gojon, R., Bogey, C. & Marsden, O. 2016 Investigation of tone generation in ideally expanded supersonic planar impinging jets using large-eddy simulation. J. Fluid Mech. 808, 90115.CrossRefGoogle Scholar
Gummer, J.H. & Hunt, B.L. 1971 The impingement of a uniform, axisymmetric, supersonic jet on a perpendicular flat plate. Aeronaut. Q. 22 (4), 403420.CrossRefGoogle Scholar
Henderson, B., Bridges, J. & Wernet, M. 2005 An experimental study of the oscillatory flow structure of tone-producing supersonic impinging jets. J. Fluid Mech. 542, 115137.CrossRefGoogle Scholar
Henderson, B. & Powell, A. 1993 Experiments concerning tones produced by an axisymmetric choked jet impinging on flat plates. J. Sound Vib. 168 (2), 307326.CrossRefGoogle Scholar
Ho, C. & Nosseir, N.S. 1981 Dynamics of an impinging jet. part 1. the feedback phenomenon. J. Fluid Mech. 105, 119142.CrossRefGoogle Scholar
Iwamoto, J. 1990 Impingement of under-expanded jets on a flat plate. J. Fluids Engng 112 (2), 179184.CrossRefGoogle Scholar
Jameson, A., Schmidt, W. & Turkel, E. 1981 Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes. In 14th Fluid and Plasma Dynamics Conference. AIAA Paper 1981-1259. AIAA.CrossRefGoogle Scholar
Jia, Z., Gao, J. & Hu, P. 2023 Numerical simulation of the tone noise generated by a supersonic impinging jet. In 29th the International Congress On Sound and Vibration. Society of Acoustics.Google Scholar
Krothapalli, A. 1985 Discrete tones generated by an impinging underexpanded rectangular jet. AIAA J. 23 (12), 19101915.CrossRefGoogle Scholar
Krothapalli, A., Rajkuperan, E., Alvi, F. & Lourenco, L. 1999 Flow field and noise characteristics of a supersonic impinging jet. J. Fluid Mech. 392, 155181.CrossRefGoogle Scholar
Liu, L., Li, X., Liu, N., Hao, P., Zhang, X. & He, F. 2021 The feedback loops of discrete tones in under-expanded impinging jets. Phys. Fluids 33 (10), 106112.CrossRefGoogle Scholar
Marsh, A.H. 1961 Noise measurements around a subsonic air jet impinging on a plane, rigid surface. J. Acoust. Soc. Am. 33 (8), 10651066.CrossRefGoogle Scholar
Nakatogawa, T., Hirata, M. & Kukita, Y. 1971 Disintegration of a supersonic jet impinging normally on a flat plate. J. Spacecr. Rockets 8 (4), 410411.CrossRefGoogle Scholar
Pamadi, B.N. 1982 On the impingement of supersonic jet on a normal flat surface. Aeronaut. Q. 33 (3), 199218.CrossRefGoogle Scholar
Powell, A. 1953 a The noise of choked jets. J. Acoust. Soc. Am. 25 (3), 385389.CrossRefGoogle Scholar
Powell, A. 1953 b On the mechanism of choked jet noise. Proc. Phys. Soc. 66 (12), 10391056.CrossRefGoogle Scholar
Powell, A. 1988 The sound producing oscillations of round underexpanded jets impinging on normal plates. J. Acoust. Soc. Am. 83 (2), 515533.CrossRefGoogle Scholar
Raman, G. 1998 Advances in understanding supersonic jet screech: review and perspective. Prog. Aerosp. Sci. 34 (1-2), 45106.CrossRefGoogle Scholar
Risborg, A. & Soria, J. 2009 High-speed optical measurements of an underexpanded supersonic jet impinging on an inclined plate. In 28th International Congress On High-Speed Imaging and Photonics, Vol 7126, p. 71261F. International Society for Optics and Photonics.CrossRefGoogle Scholar
Schmid, P.J. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 528.CrossRefGoogle Scholar
Stanescu, D. & Habashi, W.G. 1998 2N-storage low dissipation and dispersion Runge-Kutta schemes for computational acoustics. J. Comput. Phys. 143 (2), 674681.CrossRefGoogle Scholar
Tam, C.K. 1995 Supersonic jet noise. Annu. Rev. Fluid Mech. 27 (1), 1743.CrossRefGoogle Scholar
Tam, C.K. & Ahuja, K.K. 1990 Theoretical model of discrete tone generation by impinging jets. J. Fluid Mech. 214 (-1), 6787.CrossRefGoogle Scholar
Tam, C.K. & Dong, Z. 1994 Wall boundary conditions for high-order finite-difference schemes in computational aeroacoustics. Theor. Comput. Fluid Dyn. 6 (5-6), 303322.CrossRefGoogle Scholar
Tam, C.K. & Dong, Z. 1996 Radiation and outflow boundary conditions for direct computation of acoustic and flow disturbances in a nonuniform mean flow. J. Comput. Acoust. 04 (02), 175201.CrossRefGoogle Scholar
Tam, C.K. & Hu, F.Q. 1989 On the three families of instability waves of high-speed jets. J. Fluid Mech. 201 (-1), 447483.CrossRefGoogle Scholar
Tam, C. & Shen, H. 1993 Direct computation of nonlinear acoustic pulses using high-order finite difference schemes. In 15th Aeroacoustics Conference. AIAA Paper 93-4325. AIAA.CrossRefGoogle Scholar
Tam, C.K. & Webb, J.C. 1993 Dispersion-relation-preserving finite difference schemes for computational acoustics. J. Comput. Phys. 107 (2), 262281.CrossRefGoogle Scholar
Weightman, J.L., Amili, O., Honnery, D., Edgington-Mitchell, D. & Soria, J. 2019 Nozzle external geometry as a boundary condition for the azimuthal mode selection in an impinging underexpanded jet. J. Fluid Mech. 862, 421448.CrossRefGoogle Scholar
Weightman, J.L., Amili, O., Honnery, D., Soria, J. & Edgington-Mitchell, D. 2017 An explanation for the phase lag in supersonic jet impingement. J. Fluid Mech. 815, R1.CrossRefGoogle Scholar