Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T20:40:59.427Z Has data issue: false hasContentIssue false

Numerical study of double-diffusive sedimentation in thermally stratified fluid

Published online by Cambridge University Press:  27 April 2020

Chen-Yen Hung
Affiliation:
Institute of Applied Mechanics, National Taiwan University, Taipei10617, Taiwan
Yang-Yao Niu
Affiliation:
Department of Aerospace Engineering, Tamkang University, New Taipei City25137, Taiwan
Yi-Ju Chou*
Affiliation:
Institute of Applied Mechanics, National Taiwan University, Taipei10617, Taiwan Center of Advanced Study of Theoretical Sciences, National Taiwan University, Taipei10617, Taiwan
*
Email address for correspondence: [email protected]

Abstract

We conduct Eulerian–Lagrangian simulations to study double-diffusive sedimentation in stratified flows. The results show the pattern of double-diffusive sedimentation and the transition to the pattern of Rayleigh–Taylor instability when the size of particles increases. In cases of double-diffusive sedimentation, our simulation results show little variation in the temperature-to-particle flux ratio among cases with various particle sizes and initial concentrations, which is consistent with previous theoretical derivations and experimental observations. The energy budget is analysed to show that the settling enhancement is a result of the thermal effect combined with shear dissipation and that the thermal contribution decreases as the size increases. Based on the balance of the energy budget, velocity scaling was derived for the quasi-steady state in the thermally controlled region, which can be used to characterize the plumes’ final velocity of double-diffusive sedimentation. Moreover, adopting some values from the simulation results yields a velocity criterion with which to distinguish different sedimentation patterns. Finally, we investigate changes in the particle-laden plumes below the region of the apparent temperature gradient at which secondary instabilities occur in the form of significant horizontal flow motion. We show that the resulting initial shift of the dominant modes can be approximated with the existing theoretical analysis of collective instabilities for salt fingers. A simple scaling argument for the change in the total cross-sectional area of particle-laden plumes is presented, which is then used to scale the resulting enhanced sedimentation.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alldredge, A. & Cohen, Y. 1987 Can microscale chemical patches persist in the sea? Microelectrode study of marine snow, fecal pellets. Science 235, 689691.CrossRefGoogle ScholarPubMed
Arthur, R. S. & Fringer, O. B. 2014 The dynamics of breaking internal waves on slopes. J. Fluid Mech. 761, 360389.CrossRefGoogle Scholar
Auton, T. R., Hunt, J. C. R. & Prud’homme, M. 1988 The force exerted on a body in inviscid unsteady non-uniform rotational flow. J. Fluid Mech. 197, 241257.CrossRefGoogle Scholar
Balachandar, S. & Eaton, J. K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.CrossRefGoogle Scholar
Bosse, T., Kleiser, L. & Hartel, C. 2005 Numerical simulation of finite Reynolds number suspension drops settling under gravity. Phys. Fluids 17, 037101.CrossRefGoogle Scholar
Bradley, W. H. 1965 Vertical density currents. Science 150, 14231428.CrossRefGoogle ScholarPubMed
Burns, P. & Meiburg, E. 2012 Sediment-laden fresh water above salt water: linear stability analysis. J. Fluid Mech. 691, 279314.CrossRefGoogle Scholar
Burns, P. & Meiburg, E. 2015 Sediment-laden fresh water above salt water: nonlinear simulations. J. Fluid Mech. 762, 156195.CrossRefGoogle Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Clarendon.Google Scholar
Chang, Y. C., Chiu, T. Y., Hung, C. Y. & Chou, Y. J. 2019 Three-dimensional Eulerian–Lagrangian simulation of particle settling in inclined water columns. Powder Technol. 348, 8092.CrossRefGoogle Scholar
Chen, C. F. 1997 Particle flux through sediment fingers. Deep-Sea Res. I 44, 16451654.CrossRefGoogle Scholar
Chorin, A. J. 1968 Numerical solution of the Navier–Stokes equations. Math. Comput. 22, 133147.CrossRefGoogle Scholar
Chou, Y. J. & Fringer, O. B. 2008 Modeling dilute sediment suspension using large-eddy simulation with a dynamic mixed model. Phys. Fluids 20, 11503.CrossRefGoogle Scholar
Chou, Y. J. & Fringer, O. B. 2010 A model for the simulation of coupled flow-bedform evolution in turbulent flows. J. Geophys. Res. 115, C10041.CrossRefGoogle Scholar
Chou, Y. J., Gu, S. H. & Shao, Y. C. 2015 An Euler–Lagrange model for simulating fine particle suspension in liquid flows. J. Comput. Phys. 299, 955973.CrossRefGoogle Scholar
Chou, Y. J., Hung, C. Y. & Chen, C. F. 2020 Formation of drops and rings in double-diffusive sedimentation. J. Fluid Mech. 884, A35.CrossRefGoogle Scholar
Chou, Y. J. & Shao, Y. C. 2016 Numerical study of particle-induced Rayleigh–Taylor instability: effects of particles settling and entrainment. Phys. Fluids 28, 043302.CrossRefGoogle Scholar
Chou, Y.-J., Wu, F.-C. & Shih, W.-R. 2014a Toward numerical modeling of fine particle suspension using a two-way coupled Euler–Euler model. Part 1. Theoretical formualtion and implications. Intl J. Multiphase Flow 64, 3543.CrossRefGoogle Scholar
Chou, Y.-J., Wu, F.-C. & Shih, W.-R. 2014b Toward numerical modeling of fine particle suspension using a two-way coupled Euler–Euler model. Part 2. Simulation of particle-induced Rayleigh–Taylor instability. Intl J. Multiphase Flow 64, 4454.CrossRefGoogle Scholar
Cui, A. & Street, R. L. 2004 Large-eddy simulation of coastal upwelling flow. Environ. Fluid Mech. 4, 197223.CrossRefGoogle Scholar
Davarpanah, J. S. & Wells, M. G. 2016 Enhanced sedimentation beneath particle-laden flows in lakes and the ocean due to double-diffusive convection. Geophys. Res. Lett. 43, 10, 883–10, 890.Google Scholar
Elghobashi, S. 1991 On predicting particle-laden turbulent flows. Appl. Sci. Res. 52, 309329.CrossRefGoogle Scholar
Ferry, J. & Balachandar, S. 2001 A fast Eulerian method for disperse two-phase flow. Intl J. Multiphase Flow 27, 11991226.CrossRefGoogle Scholar
Fringer, O. B. & Street, R. L. 2003 The dynamics of breaking progressive interfacial waves. J. Fluid Mech. 494, 319353.CrossRefGoogle Scholar
Green, T. 1987 The importance of double diffusion to the settling of suspended material. Sedimentology 34, 319331.CrossRefGoogle Scholar
Green, T. & Schettle, J. W. 1986 Vortex rings associated with strong double-diffusive fingering. Phys. Fluids 29, 21092112.CrossRefGoogle Scholar
Hizzett, J. L., Hughes Clarke, J. E., Sumner, E. J., Cartigny, M. J. B., Talling, P. J. & Clare, M. A. 2018 Which triggers produce the most erosive, frequent, and longest runout turbidity currents on deltas? Geophys. Res. Lett. 45, 855863.CrossRefGoogle Scholar
Holyer, J. Y. 1981 On the collective instability of salt fingers. J. Fluid Mech. 110, 195207.CrossRefGoogle Scholar
Holyer, J. Y. 1984 The stability of long, steady, two-dimensional salt fingers. J. Fluid Mech. 147, 169185.CrossRefGoogle Scholar
Holyer, J. Y. 1985 The stability of long steady three-dimensional salt fingers to long-wavelength perturbations. J. Fluid Mech. 156, 495503.CrossRefGoogle Scholar
Houk, D. & Green, T. 1973 Descent rates of suspension fingers. Deep-sea Res. 20, 757761.Google Scholar
Howard, L. N. & Veronis, G. 1987 The salt-finger zone. J. Fluid Mech. 183, 123.CrossRefGoogle Scholar
Hoyal, D. C., Bursik, M. I. & Atkinson, J. F. 1999a Settling-driven convection: a mechanism of sedimentation from stratified fluids. J. Geophy. Res. 104, 79537966.CrossRefGoogle Scholar
Hoyal, D. C., Bursik, M. I. & Atkinson, J. F. 1999b The influence of diffusive convection on sedimentation from buoyant plumes. Mar. Geol. 159, 205220.Google Scholar
Kim, J. & Moin, P. 1985 Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comput. Phyics 59, 308323.CrossRefGoogle Scholar
Kunze, E. 1987 Limits on growing, finite length salt fingers: a Richardson number constraint. J. Mar. Res. 45, 533556.CrossRefGoogle Scholar
Lambitt, R. S., Achterberg, E. P., Anderson, T. R., Hughes, J. A., Iglesias-Rodriguez, M. D., Boris, A., Kelly-Gerreyn, B. A., Lucas, M., Popova, E. E., Sanders, R. et al. 2008 Ocean fertilization: a potential means of geoengineering. Phil. Trans. R. Soc. Lond. A 1882, 39193945.CrossRefGoogle Scholar
Leonard, B. P. 1979 A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput. Meth. Appl. Mech. Engng 19, 59.CrossRefGoogle Scholar
Maxey, M. R. & Riley, J. J. 1983 Equations of motion of a small sphere in linear shear flows. Phys. Fluids 26, 883889.CrossRefGoogle Scholar
Parsons, J. D., Bush, J. W. M. & Syvitski, J. P. M. 2001 Hyperpycnal plume formation from riverine outflows with small sediment concentrations. Sedimentology 48, 465478.CrossRefGoogle Scholar
Parsons, J. D. & Garcia, M. H. 2000 Enhanced sediment scavenging due to double-diffusive convection. J. Sedim. Res. 70 (1), 4752.CrossRefGoogle Scholar
Perng, C. Y. & Street, R. L. 1989 Three-dimensional unsteady flow simulations: alternative strategies for a volume-averaged calculation. Intl J. Numer. Fluids 9 (3), 341362.CrossRefGoogle Scholar
Radko, T. 2013 Double-diffusive Convection. Cambridge University Press.CrossRefGoogle Scholar
Rouhnia, M. & Strom, K. 2015 Sedimentation from flocculated suspensions in the presence of settling-driven gravitational interface instabilities. J. Geophys. Res. 120, 63846404.CrossRefGoogle Scholar
Schiller, L. & Nauman, A. 1935 A drag coefficient correlation. Z. Verein. Deutsch. Ing. 77, 318320.Google Scholar
Schmitt, R. W. 1979a Flux measurements on salt finger at an interface. J. Mar. Res. 37, 419436.Google Scholar
Schmitt, R. W. 1979b The growth rate of super-critical salt fingers. Deep-Sea Res. A 26, 2340.CrossRefGoogle Scholar
Shao, Y. C., Hung, C. Y. & Chou, Y. J. 2017 Numerical study of convective sedimentation through a sharp density interface. J. Fluid Mech. 824, 513549.CrossRefGoogle Scholar
Shen, C. Y. 1993 Heat-salt finger fluxes across a density interface. Phys. Fluids 5, 26332643.CrossRefGoogle Scholar
Shen, C. Y. 1995 Equilibrium salt-fingering convection. Phys. Fluids 7, 706717.CrossRefGoogle Scholar
Sreenivas, K. R., Singh, O. P. & Srinivasan, J. 2009 On the relationship between finger width, velocity, and fluxes in thermohaline convection. Phys. Fluids 21, 026601.CrossRefGoogle Scholar
Stern, M. E. 1969 Collective instability of salt fingers. J. Fluid Mech. 35, 209218.CrossRefGoogle Scholar
Stern, M. E. 1976 Maximum buoyancy flux across a salt finger interface. J. Mar. Res. 34, 95110.Google Scholar
Taylor, J. R. & Bucens, R. 1989 Laboratory experiments on the structure of salt fingers. Deep-Sea Res. A 36, 16751704.CrossRefGoogle Scholar
Turner, J. S. 1967 Salt fingers across a density interface. Deep-sea Res. 14, 599611.Google Scholar
Venayagamoorthy, S. K. & Fringer, O. B. 2007 On the formation and propagation of nonlinear internal boluses. J. Fluid Mech. 577, 137159.CrossRefGoogle Scholar
Yu, X., Hsu, T. J. & Balachandar, S. 2013 Convective instability in sedimentation: linear stability analysis. J. Geophys. Res. 118, 256272.CrossRefGoogle Scholar
Yu, X., Hsu, T. J. & Balachandar, S. 2014 Convective instability in sedimentation: 3-D numerical study. J. Geophys. Res. 119, 81418161.CrossRefGoogle Scholar
Zang, Y. & Street, R. L. 1995 Numerical simulation of coastal upwelling and interfacial instability of a rotational and stratified fluid. J. Fluid Mech. 305, 4775.CrossRefGoogle Scholar
Zang, Y., Street, R. L. & Koseff, J. R. 1994 A non-staggered grid, fractional step method for time-dependent incompressible Navier–Stokes equations in curvilinear coordinates. J. Comput. Phys. 114, 1833.CrossRefGoogle Scholar
Zedler, E. A. & Street, R. L. 2001 Large-eddy simulation of sediment transport: current over ripples. J. Hydraul. Engng ASCE 127, 444452.CrossRefGoogle Scholar
Zedler, E. A. & Street, R. L. 2006 Sediment transport over ripples in sscillatory flow. J. Hydraul. Engng 132 (2), 180193.CrossRefGoogle Scholar