Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-08T22:12:41.831Z Has data issue: false hasContentIssue false

Numerical study of acoustic radiation due to a supersonic turbulent boundary layer

Published online by Cambridge University Press:  28 March 2014

Lian Duan*
Affiliation:
Missouri University of Science and Technology, Rolla, MO 65409, USA
Meelan M. Choudhari
Affiliation:
NASA Langley Research Center, Hampton, VA 23681, USA
Minwei Wu
Affiliation:
National Institute of Aerospace, Hampton, VA 23666, USA
*
Email address for correspondence: [email protected]

Abstract

Direct numerical simulations are used to examine the pressure fluctuations generated by fully developed turbulence in a Mach 2.5 turbulent boundary layer, with an emphasis on the acoustic fluctuations radiated into the free stream. Single- and multi-point statistics of computed surface pressure fluctuations show good agreement with measurements and numerical simulations at similar flow conditions. Consistent with spark shadowgraphs obtained in free flight, the quasi-homogeneous acoustic near field in the free-stream region consists of randomly spaced wavepackets with a finite spatial coherence. The free-stream pressure fluctuations exhibit important differences from the surface pressure fluctuations in amplitude, frequency content and convection speeds. Such information can be applied towards improved modelling of boundary layer receptivity in conventional supersonic facilities and, hence, enable a better utilization of transition data acquired in such wind tunnels. The predicted acoustic characteristics are compared with the limited available measurements. Finally, the numerical database is used to understand the acoustic source mechanisms, with the finding that the supersonically convecting eddies that can directly radiate to the free stream are confined to the buffer zone within the boundary layer.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beresh, S. J., Henfling, J. F., Spillers, R. W. & Pruett, B. O. M. 2011 Fluctuating wall pressures measured beneath a supersonic turbulent boundary layer. Phys. Fluids 23 (7), 075110.CrossRefGoogle Scholar
Bernardini, M. & Pirozzoli, S. 2011 Wall pressure fluctuations beneath supersonic turbulent boundary layers. Phys. Fluids 23, 085102.CrossRefGoogle Scholar
Bies, D. W.1966 A review of flight and wind tunnel measurements of boundary layer pressure fluctuations and induced structure response. Tech. Rep. NASA CR-626.CrossRefGoogle Scholar
Blake, W. K. 1986 Mechanics of Flow-Induced Sound and Vibration. Academic Press.Google Scholar
Bookey, P., Wyckham, C., Smits, A. J. & Martin, M. P.2005 New experimental data of STBLI at DNS/LES accessible Reynolds numbers. AIAA Paper 2005-309.CrossRefGoogle Scholar
Borg, M. P. & Schneider, S. P. 2008 Effect of free-stream noise on roughness-induced transition for the X-51A forebody. J. Spacecr. Rockets 45 (6), 11061116.CrossRefGoogle Scholar
Bull, M. K. 1967 Wall-pressure fluctuations associated with subsonic turbulent boundary layer flow. J. Fluid Mech. 28, 719754.CrossRefGoogle Scholar
Bushnell, D. M. 1990 Notes on initial disturbance fields for the transition problem. In Instability and Transition (ed. Hussaini, M. Y. & Voigt, R. G.), vol. 1, pp. 217232. Springer.Google Scholar
Choi, H. & Moin, P. 1990 On the space–time characteristics of wall-pressure fluctuations. Phys. Fluids 2 (8), 14501460.CrossRefGoogle Scholar
Coleman, G. N., Kim, J. & Moser, R. D. 1995 A numerical study of turbulent supersonic isothermal-wall channel flow. J. Fluid Mech. 305, 159183.CrossRefGoogle Scholar
Del Alamo, J. C. & Jimenez, J. 2009 Estimation of turbulent convection velocities and corrections to Taylor’s approximation. J. Fluid Mech. 640, 526.CrossRefGoogle Scholar
Dolling, D. S. & Dussauge, J. P. 1989 A survey of measurements and measuring techniques in rapidly distorted compressible turbulent boundary layers. AGARDograph 315, 118.Google Scholar
Donaldson, J. & Coulter, S.1995 A review of free-stream flow fluctuation and steady-state flow quality measurements in the AEDC/VKF supersonic tunnel A and hypersonic tunnel B. AIAA Paper 95-6137.CrossRefGoogle Scholar
Duan, L., Beekman, I. & Martín, M. P. 2010 Direct numerical simulation of hypersonic turbulent boundary layers. Part 2. Effect of wall temperature. J. Fluid Mech. 655, 419445.CrossRefGoogle Scholar
Duan, L., Beekman, I. & Martín, M. P. 2011 Direct numerical simulation of hypersonic turbulent boundary layers. Part 3. Effect of Mach number. J. Fluid Mech. 672, 245267.CrossRefGoogle Scholar
Duan, L. & Martín, M. P. 2011 Direct numerical simulation of hypersonic turbulent boundary layers. Part 4. Effect of high enthalpy. J. Fluid Mech. 684, 2559.CrossRefGoogle Scholar
Farabee, T. & Casarella, M. J. 1991 Spectral features of wall pressure fluctuations beneath turbulent boundary layers. Phys. Fluids 3, 24102420.CrossRefGoogle Scholar
Fedorov, A. V. 2003 Receptivity of a high-speed boundary layer to acoustic disturbances. J. Fluid Mech. 491, 101129.CrossRefGoogle Scholar
Fedorov, A. V. 2011 Transition and stability of high-speed boundary layers. Annu. Rev. Fluid Mech. 43, 7995.CrossRefGoogle Scholar
Ffowcs Williams, J. E. 1963 The noise from turbulence convected at high speed. Phil. Trans. R. Soc. Lond. A 255 (1061), 453469.Google Scholar
Ffowcs Williams, J. E. & Maidanik, G. 1965 The Mach wavefield radiated by supersonic turbulent shear flows. J. Fluid Mech. 21, 641657.CrossRefGoogle Scholar
George, W. K., Beuther, P. D. & Arndt, R. E. A. 1984 Pressure spectra in turbulent free shear flows. J. Fluid Mech. 148, 155191.CrossRefGoogle Scholar
Goldstein, M. E. 2001 An exact form of Lilley’s equation with a velocity quadrupole/temperature dipole source term. J. Fluid Mech. 443, 231236.CrossRefGoogle Scholar
Guarini, S. E., Moser, R. D., Shariff, K. & Wray, A. 2000 Direct numerical simulation of a supersonic turbulent boundary layer at Mach 2.5. J. Fluid Mech. 414, 133.CrossRefGoogle Scholar
Jiang, G. S. & Shu, C. W. 1996 Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126 (1), 202228.CrossRefGoogle Scholar
Kendall, J. M.1970 Supersonic boundary layer transition studies. JPL Space Programs Summary, vol. 3, pp. 43–47.Google Scholar
Kim, J. 1989 On the structure of pressure fluctuations in simulated turbulent channel flow. J. Fluid Mech. 205, 421451.CrossRefGoogle Scholar
Kim, J. & Hussain, F. 1993 Propagation velocity of perturbations in turbulent channel flow. Phys. Fluids 5 (3), 695706.CrossRefGoogle Scholar
Kistler, A. L. & Chen, W. S. 1963 The fluctuating pressure field in a supersonic turbulent boundary layer. J. Fluid Mech. 16, 4164.CrossRefGoogle Scholar
Kovasznay, L. S. G. 1953 Turbulence in supersonic flow. J. Aeronaut. Sci. 20, 657674.CrossRefGoogle Scholar
Laufer, J.1962 Sound radiation from a turbulent boundary layer. In Proceedings of the Marseille Conference on Turbulence. CNRS Report 108.Google Scholar
Laufer, J. 1964 Some statistical properties of the pressure field radiated by a turbulent boundary layer. Phys. Fluids 7 (8), 11911197.CrossRefGoogle Scholar
Liepmann, H. W. & Roshko, A. 1957 Elements of Gasdynamics. John Wiley & Sons.CrossRefGoogle Scholar
Lighthill, M. J. 1952 On sound generated aerodynamically: I. General theory. Proc. R. Soc. Lond. A 211, 564587.Google Scholar
Lighthill, M. J. 1954 On sound generated aerodynamically: II. Turbulence as a source of sound. Proc. R. Soc. Lond. A 222, 132.Google Scholar
Logan, P.1988 Modal analysis of hot-wire measurements in supersonic turbulence. AIAA Paper 88-423.CrossRefGoogle Scholar
Maestrello, L. 1969 Radiation from and panel response to a supersonic turbulent boundary layer. J. Sound Vib. 10 (2), 261262.CrossRefGoogle Scholar
Martín, M. P. 2007 DNS of hypersonic turbulent boundary layers. Part I: Initialization and comparison with experiments. J. Fluid Mech. 570, 347364.CrossRefGoogle Scholar
Masutti, M., Spinosa, E., Chazot, O. & Carbonaro, M. 2012 Disturbance level characterization of a hypersonic blowdown facility. AIAA J. 50 (12), 27202730.CrossRefGoogle Scholar
Morgan, B., Larsson, J., Kawai, S. & Lele, S. K. 2011 Improving low-frequency characteristics of recycling/rescaling inflow turbulence generation. AIAA J. 49 (3), 582597.CrossRefGoogle Scholar
Morkovin, M. V. 1957 On transition experiments at moderate supersonic speeds. J. Aeronaut. Sci. 24 (7), 480486.CrossRefGoogle Scholar
Pate, S. R. & Schuller, C. J. 1969 Radiated aerodynamic noise effects on boundary layer transition in supersonic and hypersonic wind tunnels. AIAA J. 7 (3), 450457.CrossRefGoogle Scholar
Phillips, O. M. 1960 On the generation of sound by supersonic turbulent shear layers. J. Fluid Mech. 9, 128.CrossRefGoogle Scholar
Pirozzoli, S. & Bernardini, M. 2011 Turbulence in supersonic boundary layers at moderate Reynolds numbers. J. Fluid Mech. 688, 120168.CrossRefGoogle Scholar
Priebe, S. & Martín, M. P. 2012 Low-frequency unsteadiness in shock wave–turbulent boundary layer interaction. J. Fluid Mech. 699, 149.CrossRefGoogle Scholar
Schneider, S. P. 2001 Effects of high-speed tunnel noise on laminar–turbulent transition. J. Spacecr. Rockets 38 (3), 323333.CrossRefGoogle Scholar
Simens, M. P., Jimenez, J., Hoyas, S. & Mizuno, Y. 2009 A high-resolution code for turbulent boundary layers. J. Comput. Phys. 228 (11), 42184231.CrossRefGoogle Scholar
Smits, A. J. & Dussauge, J. P. 2006 Turbulent Shear Layers in Supersonic Flow. 2nd edn. American Institute of Physics.Google Scholar
Spalart, P. R. 1988 Direct simulation of a turbulent boundary layer up to $Re_{\theta }=1410$ . J. Fluid Mech. 187, 6198.CrossRefGoogle Scholar
Stetson, K. F.1983 Nosetip bluntness effects on cone frustrum boundary-layer transition in hypersonic flow. AIAA Paper 83-1763.CrossRefGoogle Scholar
Taylor, E. M., Wu, M. & Martín, M. P. 2006 Optimization of nonlinear error sources for weighted non-oscillatory methods in direct numerical simulations of compressible turbulence. J. Comput. Phys. 223 (1), 384397.CrossRefGoogle Scholar
Thompson, K. W. 1987 Time dependent boundary conditions for hyperbolic systems. J. Comput. Phys. 68 (1), 124.CrossRefGoogle Scholar
Tsuji, Y., Fransson, J. H. M., Alfredsson, P. H. & Johansson, A. V. 2007 Pressure statistics and their scaling in high-Reynolds-number turbulent boundary layers. J. Fluid Mech. 585, 140.CrossRefGoogle Scholar
Weiss, J., Knauss, H. & Wagner, S. 2003 Experimental determination of the free-stream disturbance field in a short-duration supersonic wind tunnel. Exp. Fluids 35, 291302.CrossRefGoogle Scholar
Welch, P. D. 1967 The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. AU-15, 70–73.Google Scholar
Williamson, J. H. 1980 Low-storage Runge–Kutta schemes. J. Comput. Phys. 35 (1), 4856.CrossRefGoogle Scholar
Willmarth, W. W. 1975 Wall pressure fluctuations beneath turbulent boundary layers. Annu. Rev. Fluid Mech. 7, 1336.CrossRefGoogle Scholar
Willmarth, W. W. & Wooldridge, C. E. 1962 Measurements of the fluctuating pressure at the wall beneath a thick turbulent boundary layer. J. Fluid Mech. 14, 187210.CrossRefGoogle Scholar
Wu, M. & Martín, M. P. 2007 Direct numerical simulation of supersonic boundary layer over a compression ramp. AIAA J. 45 (4), 879889.CrossRefGoogle Scholar
Wu, M. & Martín, M. P. 2008 Analysis of shock motion in shockwave and turbulent boundary layer interaction using direct numerical simulation data. J. Fluid Mech. 594, 7183.CrossRefGoogle Scholar
Xu, S. & Martín, M. P. 2004 Assessment of inflow boundary conditions for compressible turbulent boundary layers. Phys. Fluids 16 (7), 26232639.CrossRefGoogle Scholar
Zhong, X. & Wang, X. 2012 Direct numerical simulation on the receptivity, instability, and transition of hypersonic boundary layers. Annu. Rev. Fluid Mech. 44, 527561.CrossRefGoogle Scholar