Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-18T16:02:51.740Z Has data issue: false hasContentIssue false

Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100

Published online by Cambridge University Press:  29 March 2006

S. C. R. Dennis
Affiliation:
Department of Applied Mathematics, University of Western Ontario, London, Canada
Gau-Zu Chang
Affiliation:
Department of Applied Mathematics, University of Western Ontario, London, Canada

Abstract

Finite-difference solutions of the equations of motion for steady incompressible flow around a circular cylinder have been obtained for a range of Reynolds numbers from R = 5 to R = 100. The object is to extend the Reynolds number range for reliable data on the steady flow, particularly with regard to the growth of the wake. The wake length is found to increase approximately linearly with R over the whole range from the value, just below R = 7, at which it first appears. Calculated values of the drag coefficient, the angle of separation, and the pressure and vorticity distributions over the cylinder surface are presented. The development of these properties with Reynolds number is consistent, but it does not seem possible to predict with any certainty their tendency as R → ∞. The first attempt to obtain the present results was made by integrating the time-dependent equations, but the approach to steady flow was so slow at higher Reynolds numbers that the method was abandoned.

Type
Research Article
Copyright
© 1970 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acrivos, A., Leal, L. G., Snowden, D. D. & Pan, F. 1968 J. Fluid Mech. 34, 2.
Acrivos, A., Snowden, D. D., Grove, A. S. & Petersen, E. E. 1965 J. Fluid Mech. 21, 73.
Allen, D. N. De G. & Southwell, R. V. 1955 Quart. J. Mech. Appl. Math. 8, 12.
Apelt, C. J. 1961 Aero. Res. Counc. R. & M. no. 3175.
Batchelor, G. K. 1956 J. Fluid Mech. 1, 38.
Brodetsky, S. 1923 Proc. Roy. Soc. A 102, 542.
Dennis, S. C. R. & Chang, G. Z. 1969a Mathematics Research Centre, U.S. Army, Madison, Wisconsin, Technical Summary Report, no. 859.
Dennis, S. C. R. & Chang, G. Z. 1969 Phys. Fluids Suppl. II, 12, II–88.
Dennis, S. C. R., Hudson, J. D. & Smith, N. 1968 Phys. Fluids, 11, 933.
Dennis, S. C. R. & Shimshoni, M. 1965 Aero. Res. Counc. Current Paper, no. 797.
Filon, L. N. G. 1928 Proc. Roy. Soc. Edinb. 49, 38.
Fox, L. 1947 Proc. Roy. Soc. A 190, 31.
Hamielec, A. E. & Raal, J. D. 1969 Phys. Fluids, 12, 11.
Hirota, I. & Miyakoda, K. 1965 J. Met. Soc. Japan, Ser. II, 43, 30.
Imai, I. 1951 Proc. Roy. Soc. A 208, 487.
Imai, I. 1957 University of Maryland Tech. Note, no. BN-104.
Ingham, D. B. 1968 J. Fluid Mech. 31, 81.
Kawaguti, M. 1953a J. Phys. Soc. Japan, 8, 403.
Kawaguti, M. 1953b J. Phys. Soc. Japan, 8, 747.
Kawaguti, M. & Jain, P. 1966 J. Phys. Soc. Japan, 21, 2055.
Keller, H. B. & Takami, H. 1966 In Numerical Solutions of Nonlinear Differential Equations. (Ed. D. Greenspan) Englewood Cliffs, N.J.: Prentice-Hall.
Payne, R. B. 1958 J. Fluid Mech. 4, 8.
Roshko, A. 1967 Proc. Canadian Congress of Applied Mechanics, 3, 81.
Schlichting, H. 1960 Boundary Layer Theory. New York: McGraw-Hill.
Son, J. S. & Hanratty, T. J. 1969 J. Fluid Mech. 35, 36.
Squire, H. B. 1934 Phil. Mag. 17, 115.
Sychev, V. V. 1967 Symposium on Modern Problems in Fluid and Gas Dynamics. Tarda, Poland.
Takami, H. & Keller, H. B. 1969 Phys. Fluids Suppl. II, 12, II–51.
Taneda, S. 1956 J. Phys. Soc. Japan, 11, 302.
Thom, A. 1928 Aero. Res. Counc. R. & M. no. 1194.
Thom, A. 1933 Proc. Roy. Soc. A 141, 651.
Thoman, D. C. & Szewczyk, A. A. 1966 Heat Transfer and Fluid Mech. Lab., University of Notre Dame Tech. Rep. no. 66–14.
Tritton, D. J. 1959 J. Fluid Mech. 6, 54.
Van Dyke, M. 1964 Perturbation Methods in Fluid Mechanics. New York: Academic.
Supplementary material: PDF

Dennis and Chang supplementary material

Supplementary Material

Download Dennis and Chang supplementary material(PDF)
PDF 16.5 MB