Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T03:33:11.305Z Has data issue: false hasContentIssue false

Numerical solution of the exact equations for capillary–gravity waves

Published online by Cambridge University Press:  19 April 2006

Leonard W. Schwartz
Affiliation:
Department of Applied Mathematics, University of Adelaide, S. Australia
Jean-Marc Vanden-Broeck
Affiliation:
Department of Applied Mathematics, University of Adelaide, S. Australia Present address: Courant Institute of Mathematical Sciences, New York University, New York.

Abstract

A numerical method is presented for the computation of two-dimensional periodic progressive surface waves propagating under the combined influence of gravity and surface tension. The dynamic boundary equation is used in its exact nonlinear form. The procedure involves a boundary-integral formulation coupled with a Newtonian iteration. Solutions of high accuracy can be achieved over much of the range of wavelengths and heights including limiting waves. A number of different continuous families of solutions have been produced, all of which ultimately exhibit closed bubbles at their troughs. The so-called critical wavelengths are less important than have been previously assumed; the number of possible wave forms does increase with increasing wavelength, however.

Type
Research Article
Copyright
© 1979 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cokelet, E. D. 1977 Phil. Trans. Roy. Soc. A 286, 183.
Crapper, G. D. 1957 J. Fluid Mech. 2, 532.
Crapper, G. D. 1970 J. Fluid Mech. 40, 149.
Harrison, W. J. 1909 Proc. Lond. Math. Soc. (2) 7, 107.
Kamesvara rav, J. C. 1920 Proc. Indian Ass. Cultiv. Sci. 6, 175.
Keady, G. & Norbury, J. 1978 Math. Proc. Camb. Phil. Soc. 83, 137.
Kinnersley, W. 1976 J. Fluid Mech. 77, 229.
Krasovskii, YU. P. 1960 Dokl. Acad. Nauk S.S.S.R. 130, 1237.
Levi-Civita, T. 1925 Math. Ann. 93, 264.
Longuet-Higgins, M. S. 1963 J. Fluid Mech. 16, 138.
Longuet-Higgins, M. S. 1975 Proc. Roy. Soc. A 342, 157.
Longuet-Higgins, M. S. & Fox, M. J. H. 1977 J. Fluid Mech. 80, 721.
Longuet-Higgins, M. S. & Fox, M. J. H. 1978 J. Fluid Mech. 85, 769.
Mcgoldrick, L. F. 1970a J. Fluid Mech. 40, 251.
Mcgoldrick, L. F. 1970b J. Fluid Mech. 42, 193.
Nayfeh, A. H. 1970 Phys. Fluids 13, 545.
Nayfeh, A. H. 1971 J. Fluid Mech. 48, 385.
Nekrasov, A. I. 1921 Izv. Ivanovo-Voznesensk. Politekhn. Inst. 3, 52.
Pierson, W. J. & Fife, P. 1961 J. Geophys. Res. 66, 163.
Sasaki, K. & Murakami, T. 1973 J. Ocean. Soc. Japan 29, 94.
Schooley, A. H. 1960 J. Geophys. Res. 65, 4075.
Schwartz, L. W. 1972 Analytic continuation of Stokes' expansion for gravity waves. Ph.D. dissertation, Stanford University.
Schwartz, L. W. 1974 J. Fluid Mech. 62, 553.
Stokes, G. G. 1849 Trans. Camb. Phil. Soc. 8, 441.
Stokes, G. G. 1880 Mathematical and Physical Papers, vol. 1, p. 314. Cambridge University Press.
Tricomi, F. G. 1957 Integral Equations. Interscience.
Vanden-Broeck, J.-M., Schwartz, L. W. & Tuck, E. O. 1978 Proc. Roy. Soc. A 361, 207.
Van dyke, M. 1970 J. Fluid Mech. 44, 365.
Wehausen, J. V. & Laitone, E. V. 1960 Handbuch der Physik, vol. 9 (ed. S. Flügge), p. 446. Springer.
Wilton, J. R. 1915 Phil. Mag. 29, 688.
Yamada, H. & Shiotani, T. 1968 Bull. Disas. Prev. Res. Inst., Kyoto University, 18 (135), 1.