Article contents
Numerical simulations of uniformly stratified fluid flow over topography
Published online by Cambridge University Press: 26 April 2006
Abstract
We use a high-resolution spectral numerical scheme to solve the two-dimensional equations of motion for the flow of a uniformly stratified Boussinesq fluid over isolated bottom topography in a channel of finite depth. The focus is on topography of small to moderate amplitude and slope and for conditions such that the flow is near linear resonance of either of the first two internal wave modes. The results are compared with existing inviscid theories: the steady hydrostatic analysis of Long (1955), time-dependent linear long-wave theory, and the fully nonlinear, weakly dispersive resonant theory of Grimshaw & Yi (1991). For the latter, we use a spectral numerical technique, with improved accuracy over previously used methods, to solve the approximate evolution equation for the amplitude of the resonant mode. Also, we present some new results on the modal similarity of the solutions of Long and of Grimshaw & Yi. For flow conditions close to linear resonance, solutions of Grimshaw & Yi's evolution equation compare very well with our fully nonlinear numerical solutions, except for very steep topography. For flow conditions between the first two resonances, Long's steady solution is approached asymptotically in time when the slope of the topography is sufficiently small. For steeper topography, the flow remains unsteady. This unsteadiness is manifested very clearly as periodic oscillations in the drag, which have been observed in previous numerical simulations and tow-tank experiments. We explain these oscillations as mainly due to the internal waves that according to linear theory persist longest in the neighbourhood of the topography.
- Type
- Research Article
- Information
- Copyright
- © 1996 Cambridge University Press
References
- 18
- Cited by