Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-12-01T03:43:51.692Z Has data issue: false hasContentIssue false

Numerical simulation of the initial destabilization of an air-blasted liquid layer

Published online by Cambridge University Press:  11 January 2017

G. Agbaglah*
Affiliation:
Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
R. Chiodi
Affiliation:
Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
O. Desjardins
Affiliation:
Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
*
Email address for correspondence: [email protected]

Abstract

Numerical simulations of a planar air/water air-blast atomization are performed using an in-house multiphase Navier–Stokes solver which uses a semi-Lagrangian geometric volume of fluid method to track the position of the interface. This solver conserves mass exactly and mitigates momentum and kinetic energy conservation errors. Excellent agreement with recent experiments is obtained when comparing physical quantities, such as the liquid cone length, maximum wave frequency and spatial growth rate of the primary instability. The inclination of the gas inflow, which mimics the slope of the separator plate, is shown to enhance the primary atomization. A three-dimensional large-eddy simulation, run using physically correct air/water parameters, is used to provide the statistics of the flow. The gas layer is laminar close to the entrance and becomes turbulent at positions further downstream. The liquid wave crests expand in thin sheets, which break into secondary droplets, as observed in experiments.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Babu, P. C. & Mahesh, K. 2004 Upstream entrainment in numerical simulations of spatially evolving round jets. Phys. Fluids 16 (10), 36993705.Google Scholar
Ben Rayana, F.2007 Étude des instabilités interfaciales liquide–gaz en atomisation assistée et tailles de gouttes. PhD thesis, Institut National Polytechnique de Grenoble.Google Scholar
Ben Rayana, F., Cartellier, A. & Hopfinger, E. 2006 Assisted atomization of a liquid layer: investigation of the parameters affecting the mean drop size prediction. In Proc. ICLASS 2006, 27 August–1 September, Kyoto, Japan. Academic. ISBN: 4-9902774-1-4.Google Scholar
Bianchi, G. M., Pelloni, P., Toninel, S., Scardovelli, R., Leboissetier, A. & Zaleski, S. 2005 A quasi-direct 3D simulation of the atomization of high-speed liquid jets. In Proceedings of ASME 2005, 5–7 April, Chicago, USA. doi:10.1115/ICES2005-1067.Google Scholar
Boeck, T. & Zaleski, S. 2005 Viscous versus inviscid instability of two-phase mixing layers with continuous velocity profile. Phys. Fluids 17, 032106.Google Scholar
Desjardins, O., Blanquart, G., Balarac, G. & Pitsch, H. 2008 High order conservative finite difference scheme for variable density low Mach number turbulent flows. J. Comput. Phys. 227, 71257159.Google Scholar
Desjardins, O., McCaslin, J. O., Owkes, M. & Brady, P. 2013 Direct numerical and large-eddy simulation of primary atomization in complex geometries. Atomiz. Sprays 23 (11), 10011048.Google Scholar
Dimotakis, P. E. 1986 Two-dimensional shear-layer entrainment. AIAA J. 24, 17911796.Google Scholar
Eggers, J. & Villermaux, E. 2008 Physics of liquid jets. Rep. Prog. Phys. 71, 036601.Google Scholar
Fuster, D., Matas, J. P., Marty, S., Popinet, S., Hoepffner, J., Cartellier, A. & Zaleski, S. 2013 Instability regimes in the primary breakup region of planar coflowing sheets. J. Fluid Mech. 736, 150176.Google Scholar
Gorokhovski, M. & Herrmann, M. 2008 Modelling primary atomization. Annu. Rev. Fluid Mech. 40, 343366.Google Scholar
Hong, M., Cartellier, A. & Hopfinger, E. 2002 Atomisation and mixing in coaxial injection. In Proceedings 4th International Conference on Launcher Technology ‘Space Launcher Liquid Propulsion’, Liege, Belgium, pp. 36.Google Scholar
Jerome, J. J. S., Marty, S., Matas, J. P., Zaleski, S. & Hoepffner, J. 2013 Vortices catapult droplets in atomization. Phys. Fluids 25, 112109.Google Scholar
Marmottant, P. & Villermaux, E. 2004 On spray formation. J. Fluid Mech. 498, 73111.Google Scholar
Matas, J. P., Marty, S. & Cartellier, A. 2011 Experimental and analytical study of the shear instability of a gas–liquid mixing layer. Phys. Fluids 23, 094112.Google Scholar
Menard, T., Tanguy, S. & Berlemont, A. 2007 Coupling level set/VOF/ghost fluid methods: validation and application to 3D simulation of the primary break-up of a liquid jet. Intl J. Multiphase Flow 33, 510524.Google Scholar
Meneveau, C., Lund, T. S. & Cabot, W. H. 1996 A Lagrangian dynamic subgrid-scale model of turbulence. J. Fluid Mech. 319, 353385.Google Scholar
Negretti, E., Socolofsky, S. & Jirka, G. 2008 Linear stability analysis of inclined two-layer stratified flows. Phys. Fluids 20, 094104.Google Scholar
Odier, N., Balarac, G., Corre, C. & Moureauc, V. 2015 Numerical study of a flapping liquid sheet sheared by a high-speed stream. Intl J. Multiphase Flow 77, 196208.Google Scholar
Otto, T., Rossi, M. & Boeck, T. 2013 Viscous instability of a sheared liquid–gas interface: dependence on fluid properties and basic velocity profile. Phys. Fluids 25, 032103.Google Scholar
Owkes, M. & Desjardins, O. 2014 A computational framework for conservative, three-dimensional, un-split, geometric transport with application to the volume-of-fluid (VOF) method. J. Comput. Phys. 270, 587612.Google Scholar
Owkes, M. & Desjardins, O. 2015 A mesh-decoupled height function method for computing interface curvature. J. Comput. Phys. 281, 285300.Google Scholar
Raynal, L.1997 Thèse. PhD thesis, Universite Joseph Fourier, Grenoble.Google Scholar
Sani, R. L., Shen, J., Pironneau, O. & Gresho, P. M. 2006 Pressure boundary condition for the time-dependent incompressible Navier–Stokes equations. Intl J. Numer. Meth. Fluids 50, 673682.Google Scholar
Shinjo, J. & Umemura, A. 2010 Simulation of liquid jet primary breakup: dynamics of ligament and droplet formation. Intl J. Multiphase Flow 36, 513532.Google Scholar
Shinjo, J. & Umemura, A. 2011 Surface instability and primary atomization characteristics of straight liquid jet sprays. Intl J. Multiphase Flow 37, 12941304.Google Scholar
da Silva, C. B. & Métais, O. 2002 On the influence of coherent structures upon interscale interactions in turbulent plane jets. J. Fluid Mech. 473, 103145.Google Scholar
Yecko, P., Zaleski, S. & Fullana, J.-M. 2002 Viscous modes in two-phase mixing layers. Phys. Fluids 14, 41154122.CrossRefGoogle Scholar