Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-05T13:02:15.420Z Has data issue: false hasContentIssue false

Numerical simulation of sand waves in a turbulent open channel flow

Published online by Cambridge University Press:  18 July 2014

Ali Khosronejad
Affiliation:
Saint Anthony Falls Laboratory, and Department of Civil Engineering, University of Minnesota, Minneapolis, MN 55414, USA
Fotis Sotiropoulos*
Affiliation:
Saint Anthony Falls Laboratory, and Department of Civil Engineering, University of Minnesota, Minneapolis, MN 55414, USA
*
Email address for correspondence: [email protected]

Abstract

We develop a coupled hydro-morphodynamic numerical model for carrying out large-eddy simulation of stratified, turbulent flow over a mobile sand bed. The method is based on the curvilinear immersed boundary approach of Khosronejad et al. (Adv. Water Resour., vol. 34, 2011, pp. 829–843). We apply this method to simulate sand wave initiation, growth and evolution in a mobile bed laboratory open channel, which was studied experimentally by Venditti & Church (J. Geophys. Res., vol. 110, 2005, F01009). We show that all the major characteristics of the computed sand waves, from the early cross-hatch and chevron patterns to fully grown three-dimensional bedforms, are in good agreement with the experimental data both qualitatively and quantitatively. Our simulations capture the measured temporal evolution of sand wave amplitude, wavelength and celerity with good accuracy and also yield three-dimensional topologies that are strikingly similar to what was observed in the laboratory. We show that near-bed sweeps are responsible for initiating the instability of the initially flat sand bed. Stratification effects, which arise due to increased concentration of suspended sediment in the flow, also become important at later stages of the bed evolution and need to be taken into account for accurate simulations. As bedforms grow in amplitude and wavelength, they give rise to energetic coherent structures in the form of horseshoe vortices, which transport low-momentum near-bed fluid and suspended sediment away from the bed, giving rise to characteristic ‘boil’ events at the water surface. Flow separation off the bedform crestlines is shown to trap sediment in the lee side of the crestlines, which, coupled with sediment erosion from the accelerating flow over the stoss side, provides the mechanism for continuous bedform migration and crestline rearrangement. The statistical and spectral properties of the computed sand waves are calculated and shown to be similar to what has been observed in nature and previous numerical simulations. Furthermore, and in agreement with recent experimental findings (Singh et al., Water Resour. Res., vol. 46, 2010, pp. 1–10), the spectra of the resolved velocity fluctuations above the bed exhibit a distinct spectral gap whose width increases with distance from the bed. The spectral gap delineates the spectrum of turbulence from the low-frequency range associated with very slowly evolving, albeit energetic, coherent structures induced by the migrating sand waves. Overall the numerical simulations reproduce the laboratory observations with good accuracy and elucidate the physical phenomena governing the interaction between the turbulent flow and the developing mobile bed.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, J. R. L. 1968 Current Ripples: Their Relation to Patterns of Water and Sediment Motion. p. 433. North-Holland.Google Scholar
Allen, J. R. L. 1971 Bed forms due to mass transfer in turbulent flows: a kaleidoscope of phenomena. J. Fluid Mech. 49, 4963.CrossRefGoogle Scholar
Andreotti, B., Claudin, P., Devauchelle, O., Durán, O. & Fourrière, A. 2011 Bedforms in a turbulent stream: ripples, chevrons and antidunes. J. Fluid Mech. 690, 94128.CrossRefGoogle Scholar
Andreotti, B., Claudin, P. & Douady, S. 2002 Selection of dune shapes and velocities, Part 1: Dynamics of sand, wind and barchans. Eur. Phys. J. B 28, 321329.CrossRefGoogle Scholar
Angelis, V. D., Lombardi, P. & Banerjee, S. 1997 Direct numerical simulation of turbulent flow over a wavy wall. Phys. Fluids 9, 24292442.CrossRefGoogle Scholar
Ashley, G. M. 1990 Classification of large-scale subaqueous bedforms: a new look at an old problem. J. Sedim. Petrol. 60, 160172.Google Scholar
Barabási, A. L. & Stanley, H. E. 1995 Fractal Concepts in Surface Growth. Cambridge University Press.CrossRefGoogle Scholar
Barr, B. C., Slinn, D., Piero, T. & Winters, K. 2004 Numerical simulation of turbulent, oscillatory flow over sand ripples. J. Geophys. Res. 109, C09009.Google Scholar
Besio, G., Blondeaux, P. & Vittori, G. 2006 On the formation of sand waves and sand banks. J. Fluid Mech. 557, 127.CrossRefGoogle Scholar
Best, J. 2005 The fluid dynamics of river dunes: a review and some future research directions. J. Geophys. Res. 119, 121.Google Scholar
Best, J. & Kostaschuk, R. A. 2002 An experimental study of turbulent flow over a low-angle dune. J. Geophys. Res. 107 (C9), 3135.Google Scholar
Blondeaux, P. 2001 Mechanics of coastal forms. Annu. Rev. Fluid Mech. 33, 339370.CrossRefGoogle Scholar
Blondeaux, P. & Vittori, G. 1991 Vorticity dynamics in an oscillatory flow over a rippled bed. J. Fluid Mech. 226, 257289.CrossRefGoogle Scholar
Borazjani, I., Ge, L. & Sotiropoulos, F. 2008 Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies. J. Comput. Phys. 227, 75877620.CrossRefGoogle ScholarPubMed
Bucher, W. H. 1919 On ripples and related sedimentary surface forms and their paleogeographic interpretation. Am. J. Sci. 47, 149210.CrossRefGoogle Scholar
Celik, I. & Rodi, W. 1988 Modeling suspended sediment transport in non-equilibrium situations. J. Hydraul. Engng ASCE 114 (10), 11571191.CrossRefGoogle Scholar
Chang, Y. S. & Scotti, A. 2003 Entrainment and suspension of sediments into a turbulent flow over ripples. J. Turbul. 4 (19), 122.CrossRefGoogle Scholar
Chang, Y. S. & Scotti, A. 2004 Modeling unsteady turbulent flows over ripples: Reynolds-averaged Navier–Stokes equations (RANS) versus large-eddy simulation (LES). J. Geophys. Res. 109, C09012.Google Scholar
Charru, F., Andreotti, B. & Claudin, P. 2013 Sand ripples and dunes. Annu. Rev. Fluid Mech. 45, 469493.CrossRefGoogle Scholar
Chau, L. & Bhaganagar, K. 2012 Understanding turbulent flow over ripple-shaped random roughness in a channel. Phys. Fluids 24, 115102.CrossRefGoogle Scholar
Chou, Y. J. & Fringer, O. B. 2008 Modeling dilute sediment suspension using large-eddy simulation with a dynamic mixed model. Phys. Fluids 20, 115103.CrossRefGoogle Scholar
Chou, Y. J. & Fringer, O. B. 2010 A model for the simulation of coupled flow–bed form evolution in turbulent flows. J. Geophys. Res. 115, C10041.Google Scholar
Chrisohoides, A. & Sotiropoulos, F. 2003 Experimental visualization of Lagrangian coherent structures in aperiodic flows. Phys. Fluids 15, L25L28.CrossRefGoogle Scholar
Coco, G., Murray, A. B., Green, M. O., Thieler, E. R. & Hume, T. M. 2007 Sorted bed forms as self-organized patterns: 1. Model development. J. Geophys. Res. 112, F03015.Google Scholar
Coleman, S. E. & Fenton, J. D. 2000 Potential-flow instability theory and alluvial stream bed forms. J. Fluid Mech. 418, 101117.CrossRefGoogle Scholar
Coleman, S. E. & Melville, B. W. 1994 Bed form development. J. Hydraul. Engng 120, 544560.CrossRefGoogle Scholar
Coleman, S. E. & Nikora, V. I. 2008 A unifying framework for particle entrainment. Water Resour. Res. 44, W04415.CrossRefGoogle Scholar
Coleman, S. E. & Nikora, V. I. 2009 Exner equation: a continuum approximation of a discrete granular system. Water Resour. Res. 45, W09421.CrossRefGoogle Scholar
Coleman, S. E., Nikora, V. I., McLean, S. R., Clunie, T. M., Schlicke, T. & Melville, B. W. 2006 Equilibrium hydrodynamics concept for developing dunes. Phys. Fluids 18, 105104.CrossRefGoogle Scholar
Colombini, R. M. 2004 Revisiting the linear theory of sand dune formation. J. Fluid Mech. 502, 116.CrossRefGoogle Scholar
Colombini, M. & Stocchino, A. 2012 Three-dimensional river bed forms. J. Fluid Mech. 695, 6380.CrossRefGoogle Scholar
Dargahi, B. 1989 The turbulent flow field around a circular cylinder. Exp. Fluids 8, 112.CrossRefGoogle Scholar
Dargahi, B. 1990 Controlling mechanism of local scouring. J. Hydraul. Engng 116 (10), 11971214.CrossRefGoogle Scholar
Diplas, P., Dancey, C. L., Celik, A. O., Valyrakis, M., Greer, K. & Akar, T. 2008 The role of impulse on the initiation of particle movement under turbulent flow conditions. Science 322 (5902), 717720.CrossRefGoogle ScholarPubMed
Dreano, J., Valance, A., Lague, D. & Cassar, C. 2010 Experimental study on transient and steady-state dynamics of bedforms in supply limited configuration. Earth Surf. Process. Landf. 35 (14), 17301743.CrossRefGoogle Scholar
Escauriaza, C. & Sotiropoulos, F. 2011a Initial stages of erosion and bed-form development in turbulent flow past a bridge pier. J. Geophys. Res. 116, F03007.Google Scholar
Escauriaza, C. & Sotiropoulos, F. 2011b Lagrangian dynamics of bedload transport in turbulent junction flows. J. Fluid Mech. 666, 3676.CrossRefGoogle Scholar
Fredsoe, J. 1974 On the development of dunes in erodible channels. J. Fluid Mech. 60, 116.Google Scholar
Ge, L. & Sotiropoulos, F. 2007 A numerical method for solving the 3D unsteady incompressible Navier–Stokes equations in curvilinear domains with complex immersed boundaries. J. Comput. Phys. 225, 17821809.CrossRefGoogle ScholarPubMed
Germano, M., Piomelli, U., Moin, P. & Cabot, W. H. 1991 A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3 (7), 17601765.CrossRefGoogle Scholar
Gilmanov, A. & Sotiropoulos, F. 2005 A hybrid Cartesian/immersed boundary method for simulating flows with three-dimesional, geometrically complex, moving bodies. J. Comput. Phys. 207 (2), 457492.CrossRefGoogle Scholar
Giri, S. & Shimizu, Y. 2006 Numerical computation of sand dune migration with free surface. Water Resour. Res. 42 (10), W10422.CrossRefGoogle Scholar
Giri, S. & Shimizu, Y. 2007 Validation of a numerical model for flow and bedform dynamics. Annu. J. Hydraul. Engng, Jpn. Soc. Civ. Engng 51, 139144.Google Scholar
Grass, A. J. 1970 Initial instability of fine bed sand. J. Hydraul. Div. ASCE HY3, 619632.CrossRefGoogle Scholar
Grass, A. J. 1971 Structural features of turbulent flow over smooth and rough boundaries. J. Fluid Mech. 50, 233255.CrossRefGoogle Scholar
Gyr, A. & Schmid, A. 1989 The different ripple formation mechanism. J. Hydraul. Res. 27, 6174.CrossRefGoogle Scholar
Hansen, J., van Hecke, M., Haaning, A., Ellegaard, C., Andersen, K., Bohr, T. & Sams, T. 2001 Pattern formation: instabilities in sand ripples. Nature 410, 324.CrossRefGoogle ScholarPubMed
Hayashi, T. 1970 Formation of dunes and antidunes in open channels. J. Hydraul. Engng 96, 357366.Google Scholar
Henn, D. & Sykes, R. I. 1999 Large-eddy simulation of flow over wavy surfaces. J. Fluid Mech. 383, 75112.CrossRefGoogle Scholar
Hino, M. 1968 Equilibrium-range spectra of sand waves formed by flowing water. J. Fluid Mech. 34, 565573.CrossRefGoogle Scholar
Van Der Hoven, I. 1957 Power spectrum of horizontal wind speed in the frequency range from 0.0007 to 900 cycles per hour. J. Meteorol. 14, 160194.2.0.CO;2>CrossRefGoogle Scholar
Jackson, R. G. 1976 Sedimentological and fluid-dynamic implications of the turbulence bursting phenomenon in geophysical flows. J. Fluid Mech. 77, 531560.CrossRefGoogle Scholar
Jain, S. C. & Kennedy, J. F. 1974 The spectral evolution of sedimentary bed forms. J. Fluid Mech. 63, 301314.CrossRefGoogle Scholar
Jerolmack, D. J. & Mohrig, D. 2005a A unified model for subaqueous bedform dynamics. Water Resour. Res. 41, W12421.CrossRefGoogle Scholar
Jerolmack, D. J. & Mohrig, D. 2005b Formation of Precambrian sediment ripples. Nature 433, 123127.Google Scholar
Jerolmack, D. J. & Mohrig, D. 2005c Interactions between bed forms: topography, turbulence and transport. J. Geophys. Res. 110, F02014.Google Scholar
Jiang, G. S. & Shu, C. W. 1996 Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126 (1), 202228.CrossRefGoogle Scholar
de Jong, B. 1989 Bed waves generated by internal waves in alluvial channels. J. Hydraul. Engng 115, 801817.CrossRefGoogle Scholar
Kang, S., Lightbody, A., Hill, C. & Sotiropoulos, F. 2011 High-resolution numerical simulation of turbulence in natural waterways. Adv. Water Resour. 34 (1), 98113.CrossRefGoogle Scholar
Kang, S. & Sotiropoulos, F. 2011 Flow phenomena and mechanisms in a field-scale experimental meandering channel with a pool–riffle sequence: insights gained via numerical simulation. J. Geophys. Res. 116, F03011.Google Scholar
Kang, S. & Sotiropoulos, F. 2012 Assessing the predictive capabilities of isotropic, eddy-viscosity Reynolds-averaged turbulence models in a natural-like meandering channel. Water Resour. Res. 48, W06505.CrossRefGoogle Scholar
von Kármán, T. 1947 Sand ripples in the desert. Technion Yearbook 6, 5254.Google Scholar
Kennedy, J. F. 1969 The formation of sediment ripples, dunes and antidunes. Annu. Rev. Fluid Mech. 1, 147168.CrossRefGoogle Scholar
Khelifa, A. & Ouellet, Y. 2000 Prediction of sand ripple geometry under waves and currents ASCE. J. Waterway Port Coast. Ocean Engng 126 (1), 1422.CrossRefGoogle Scholar
Khosronejad, A.2006 Three-dimensional numerical simulation of turbulent flow and sediment transport in dam reservoirs. PhD thesis, Tarbiat Modares University, Iran.Google Scholar
Khosronejad, A., Hill, C., Kang, S. & Sotiropoulos, F. 2013 Computational and experimental investigation of scour past laboratory models of stream restoration rock structures. Adv. Water Resour. 54, 191207.CrossRefGoogle Scholar
Khosronejad, A., Kang, S., Borazjani, I. & Sotiropoulos, F. 2011 Curvilinear immersed boundary method for simulating coupled flow and bed morphodynamic interactions due to sediment transport phenomena. Adv. Water Resour. 34 (7), 829843.CrossRefGoogle Scholar
Khosronejad, A., Kang, S. & Sotiropoulos, F. 2012 Experimental and computational investigation of local scour around bridge piers. Adv. Water Resour. 37, 7385.CrossRefGoogle Scholar
Khosronejad, A., Kozarek, J. L. & Sotiropoulos, F. 2014 Simulation-based approach for stream restoration structure design: model development and validation. J. Hydraul. Engng 140 (7), 116.CrossRefGoogle Scholar
Khosronejad, A., Rennie, C., Salehi, A. & Townsend, R. 2007 3D numerical modeling of flow and sediment transport in laboratory channel bends. J. Hydraul. Engng 133 (10), 11231134.CrossRefGoogle Scholar
Khosronejad, A., Salehi, A. A. & Rennie, C. 2008 Three dimensional numerical modeling of sediment release in a water reservoir. J. Hydraul. Res. 46 (2), 209223.CrossRefGoogle Scholar
Kidanemariam, A. G. & Uhlmann, M. 2014 Direct numerical simulation of pattern formation in subaqueous sediment. J. Fluid Mech. 750, 113.CrossRefGoogle Scholar
Kostaschuk, R. A. 2000 A field study of turbulence and sediment dynamics over subaqueous dunes with flow separation. Sedimentology 47, 519531.CrossRefGoogle Scholar
Kraft, S., Wang, Y. & Oberlack, M. 2011 Large eddy simulation of sediment deformation in a turbulent flow by means of level-set method. J. Hydraul. Engng 137 (11), 13941405.CrossRefGoogle Scholar
Lacy, J. R., Rubin, D. M., Ikeda, H., Mokudai, K. & Hanes, D. M. 2007 Bed forms created by simulated waves and currents in a large flume. J. Geophys. Res. 112, C10018.Google Scholar
Liu, H. K. 1957 Mechanics of sediment-ripple formation. J. Hydraul. Engng 83, 123.Google Scholar
MacVicar, B. J., Parrott, L. & Roy, A. G. 2006 A two-dimensional discrete particle model of gravel bed river systems. J. Geophys. Res. 111, F03009.Google Scholar
Mazumder, B., Pal, D., Ghoshal, K. & Ojha, S. 2009 Turbulence statistics of flow over isolated scalene and isosceles triangular-shaped bed forms. J. Hydraul. Res. 47 (5), 626637.CrossRefGoogle Scholar
de Moraes Franklin, E. 2013 Three-dimensional sand ripples as the product of vortex instability. Appl. Math. Model. 37, 31933199.CrossRefGoogle Scholar
Muller, A. & Gyr, A. 1986 On the vortex formation in the mixing layer behind dunes. J. Hydraul Res. 24, 359375.CrossRefGoogle Scholar
Nabi, M., de Vriend, H. J., Mosselman, E., Sloff, J. & Shimizu, Y. 2012 Detailed simulation of morphodynamics: 1. Hydrodynamic model. Water Resour. Res. 48, W12523.CrossRefGoogle Scholar
Nezu, L. & Nakagawa, H. 1993 Turbulence in Open-Channel Flows, IAHR Monograph. Balkema.Google Scholar
Niemann, S. L., Fredsøe, J. & Jacobsen, N. G. 2011 Sand dunes in steady flow at low Froude numbers: dune height evolution and flow resistance. J. Hydraul. Engng 137 (1), 514.CrossRefGoogle Scholar
Nishimori, H. & Ouchi, N. 1993 Formation of ripple patterns and dunes by wind-blown sand. Phys. Rev. Lett. 71, 197200.CrossRefGoogle ScholarPubMed
Nittrouer, J. A., Allison, M. A. & Campanella, R. 2008 Bedload transport rates for the lowermost Mississippi River. J. Geophys. Res. 113, F03004.Google Scholar
Nittrouer, J. A., Mohrig, D. & Allison, M. A. 2011 Punctuated sand transport in the lowermost Mississippi River. J. Geophys. Res. 116, F04025.Google Scholar
Omidyeganeh, M. & Piomelli, U. 2013a Large-eddy simulation of three-dimensional dunes in a steady, unidirectional flow. Part 1. Turbulence statistics. J. Fluid Mech. 721, 454483.CrossRefGoogle Scholar
Omidyeganeh, M. & Piomelli, U. 2013b Large-eddy simulation of three-dimensional dunes in a steady, unidirectional flow. Part 2. Flow structures. J. Fluid Mech. 734, 509534.CrossRefGoogle Scholar
Palmsten, M. L., Kozarek, J. L., Calantoni, J., Kooney, T. & Holland, K.2011 Spatial and temporal evolution of stream bedforms. AGU Fall Meeting Abstracts, p. I1315.Google Scholar
Paola, C. & Voller, V. R. 2005 A generalized Exner equation for sediment mass balance. J. Geophys. Res. 110, F04014.Google Scholar
Raudkivi, A. J. 1966 Bed forms in alluvial channels. J. Fluid Mech. 26, 507514.CrossRefGoogle Scholar
Raudkivi, A. J. 2007 Transition from ripples to dunes. J. Hydraul. Engng 132, 13161320.CrossRefGoogle Scholar
Richards, K. J. 1980 The formation of ripples and dunes on an erodible bed. J. Fluid Mech. 99, 597618.CrossRefGoogle Scholar
van Rijn, L. C. 1984 Sediment transport, Part III: Bed forms and alluvial roughness. J. Hydraul. Engng 110 (12), 17331754.CrossRefGoogle Scholar
van Rijn, L. C. 1993 Principles of Sediment Transport in Rivers, Estuaries, and Coastal Seas. Aqua Publications.Google Scholar
Roulund, A., Sumer, B. M., Fredsoe, J. & Michelsen, J. 2005 Numerical and experimental investigation of flow and scour around a circular pile. J. Fluid Mech. 534, 351401.CrossRefGoogle Scholar
Sagaut, P. 1988 Large Eddy Simulation for Incompressible Flows. Springer.Google Scholar
Sarkar, S. & Dey, S. 2010 Double-averaging turbulence characteristics in flows over a gravel-bed. J. Hydraul. Res. 48, 801809.CrossRefGoogle Scholar
Scandura, P. G., Vittori, G. & Blondeaux, P. 2000 Three-dimensional oscillatory flow over steep ripples. J. Fluid Mech. 412, 335378.CrossRefGoogle Scholar
Schindler, R. J. & Robert, A. 2004 Suspended sediment concentration and the ripple–dune transition. Hydrol. Process. 18, 32153227.CrossRefGoogle Scholar
Seminara, G., Colombini, M. & Parker, G. 1996 Nearly pure sorting waves and formation of bedload sheets. J. Fluid Mech. 312, 253278.CrossRefGoogle Scholar
Singh, A., Porté-Agel, F. & Foufoula-Georgiou, E. 2010 On the influence of gravel bed dynamics on velocity power spectra. Water Resour. Res. 46, 110.CrossRefGoogle Scholar
Smagorinsky, J. S. 1963 General circulation experiments with the primitive equations. Mon. Weath. Rev. 91, 99164.2.3.CO;2>CrossRefGoogle Scholar
Tjerry, S. & Fredsøe, J. 2005 Calculation of dune morphology. J. Geophys. Res. 110, F04013.Google Scholar
Venditti, J. G. & Bauer, B. O. 2005 Turbulent flow over a dune: Green River, Colorado. Earth Surf. Process. Landf. 30, 289304.CrossRefGoogle Scholar
Venditti, J. G. & Bennett, S. J. 2000 Spectral analysis of turbulent flow and suspended sediment transport over fixed dunes. J. Geophys. Res. 105, 2203522047.CrossRefGoogle Scholar
Venditti, J. G. & Church, M. A. 2005 Bed form initiation from a flat sand bed. J. Geophys. Res. 110, F01009.Google Scholar
Venditti, J. G., Church, M. A. & Bennett, S. J. 2005a Morphodynamics of small-scale superimposed sand waves over migrating dune bed forms. Water Resour. Res. 41, W10423.CrossRefGoogle Scholar
Venditti, J. G., Church, M. A. & Bennett, S. J. 2005b On the transition between 2D and 3D dunes. Sedimentology 52, 13431359.CrossRefGoogle Scholar
Venditti, J. G., Church, M. A. & Bennett, S. J. 2006 On interfacial instability as a cause of transverse subcritical bed forms. Water Resour. Res. 42, W07423.CrossRefGoogle Scholar
Venugopal, V., Porté Agel, F., Foufoula-Georgiou, E. & Carper, M. 2003 Multiscale interactions between surface shear stress and velocity in turbulent boundary layers. J. Geophys. Res. 108 (D19), 4613.Google Scholar
Wu, W., Rodi, W. & Wenka, T. 2000 3D numerical modeling of flow and sediment transport in open channels. J. Hydraul. Engng 126 (1), 415.CrossRefGoogle Scholar
Yalin, M. S. 1992 River Mechanics. Elsevier.Google Scholar
Yue, W., Lin, C. L. & Patel, V. C. 2005 Coherent structures in open-channel flows over a fixed dune. Trans. ASME: J. Fluids Engng 127 (5), 858864.Google Scholar
Zedler, E. A. & Street, R. L. 2001 Large-eddy simulation of sediment transport: currents over ripples. J. Hydraul. Engng 127 (6), 444452.CrossRefGoogle Scholar
Zedler, E. A. & Street, R. L. 2006 Sediment transport over ripples in oscillatory flow. J. Hydraul. Engng 132 (2), 114.CrossRefGoogle Scholar
Zou, L. Y., Liu, N. S. & Lu, X. Y. 2006 An investigation of pulsating turbulent open channel flow by large eddy simulation. Comput. Fluids 35 (1), 74102.CrossRefGoogle Scholar