Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-22T10:07:33.146Z Has data issue: false hasContentIssue false

Numerical simulation of active separation control by a synthetic jet

Published online by Cambridge University Press:  15 February 2007

JULIEN DANDOIS
Affiliation:
ONERA, Applied Aerodynamic Department, BP 72, 29 av. de la division Leclerc, 92322 Châtillon Cedex, France
ERIC GARNIER
Affiliation:
ONERA, Applied Aerodynamic Department, BP 72, 29 av. de la division Leclerc, 92322 Châtillon Cedex, France
PIERRE SAGAUT
Affiliation:
Laboratoire de Modélisation en Mécanique, Université Pierre et Marie Curie – Paris 6, Boite 162, 4 Place Jussieu 75252, Paris cedex 5, France ONERA, CFD and Aeroacoustics Department, 92322 Châtilon Cedex, France

Abstract

Direct numerical simulation (DNS) and large-eddy simulation (LES) are carried out to investigate the frequency effect of zero-net-mass-flux forcing (synthetic jet) on a generic separated flow. The selected test case is a rounded ramp at a Reynolds number based on the step height of 28 275. The incoming boundary layer is fully turbulent with Rθ=1410. The whole flow in the synthetic jet cavity is computed to ensure an accurate description of the actuator effect on the flow field. In a first step, DNS is used to validate LES of this particular flow. In a second step, the effect of a synthetic jet at two reduced frequencies of 0.5 and 4 (based on the separation length of the uncontrolled case and the free-stream velocity) is investigated using LES. It is demonstrated that, with a proper choice of the oscillating frequency, separation can be drastically reduced for a velocity ratio between the jet and the flow lower than one. The low frequency is close to the natural vortex shedding frequency. Two different modes of the synthetic jet have been identified. A vorticity-dominated mode is observed in the low-frequency forcing case for which the separation length is reduced by 54%, while an acoustic-dominated mode is identified in the high-frequency forcing case for which the separation length is increased by 43%. The decrease of the separation length in the low-frequency forcing case is correlated with an increase of the turbulent kinetic energy level and consequently with an increase of the entrainment in the separated zone. A linear inviscid stability analysis shows that the increase of the separation length in the high-frequency forcing case is due to a modification of the mean velocity profile suggested by Stanek and coworkers. The result is a lower amplification of the perturbations and consequently, a lower entrainment into the mixing layer. To our knowledge, it is the first time that Stanek's hypothesis has been assessed, thanks to numerical simulations of fully turbulent flow.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, E. W. & Johnston, J. P. 1988 a Effects of the separating shear layer on the reattachment flow structure Part 1: Pressure and turbulence quantities. Exps. Fluids 6, 417426.Google Scholar
Adams, E. W. & Johnston, J. P. 1988 b Effects of the separating shear layer on the reattachment flow structure Part 2: Reattachment length and wall shear stress. Exps. Fluids 6, 493499.CrossRefGoogle Scholar
Amitay, M. & Glezer, A. 2002 Role of actuation frequency in controlled flow reattachment over stalled airfoil. AIAA J. 40 (2) 203216.CrossRefGoogle Scholar
Bhattacharjee, S., Scheelke, B. & Troutt, T. R. 1986 Modification of vortex interactions in a reattaching separated flow. AIAA J. 24, 623629.CrossRefGoogle Scholar
Browand, F. K. & Troutt, T. R. 1985 The turbulent mixing layer: geometry of large vortices. J. Fluid Mech. 158, 489509.CrossRefGoogle Scholar
Brown, G. L. & Roshko, A. 1974 On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64, 775816.CrossRefGoogle Scholar
Brunn, A. & Nitsche, W. 2003 Separation control by periodic excitation in a turbulent axisymmetric diffuser flow. J. Turb. 4 (9) 113.CrossRefGoogle Scholar
Castro, I. P. & Haque, A. 1987 The structure of a turbulent shear layer bounding a separation region. J. Fluid Mech. 179, 439468.CrossRefGoogle Scholar
Chandrsuda, C. & Bradshaw, P. 1981 Turbulence structure of a reattaching mixing layer. J. Fluid Mech. 110, 171194.Google Scholar
Chen, Y., Liang, S., Aung, K., Glezer, A. & Lagoda, J. 1999 Enhanced mixing in a simulated combustor using synthetic jet actuators. AIAA Paper 99-0449.CrossRefGoogle Scholar
Cherry, N. J., Hillier, R. & Latour, M. E. M. P. 1984 Unsteady measurements in a separated and reattaching flow. J. Fluid Mech. 144, 1346.CrossRefGoogle Scholar
Chun, K. B. & Sung, H. J. 1996 Control of turbulent separated flow over a backward-facing step by local forcing. Exps. Fluids 21, 417426.CrossRefGoogle Scholar
Chun, K. B. & Sung, H. J. 1998 Visualization of a locally-forced separated flow over a backward-facing step. Exps. Fluids 25, 133142.CrossRefGoogle Scholar
Dacles-Mariani, J., Zilliac, G. G., Chow, J. S. & Bradshaw, P. 1995 Numerical/Experimental study of a wingtip vortex in the near field. AIAA J. 33, 15611568.Google Scholar
Dandois, J., Garnier, E. & Sagaut, P. 2006 Unsteady Simulation of Synthetic Jet in a Crossflow. AIAA J. 44, 225238.CrossRefGoogle Scholar
Darabi, A. & Wygnanski, I. 2004 a Active management of naturally separated flow. Part 1. The forced reattachment process. J. Fluid Mech. 510, 105129.CrossRefGoogle Scholar
Darabi, A. & Wygnanski, I. 2004 b Active management of naturally separated flow. Part 2. The separation process. J. Fluid Mech. 510, 131144.CrossRefGoogle Scholar
Deck, S. 2005 a Numerical simulation of transonic buffet over a supercritical airfoil. AIAA J. 43, 15561566.CrossRefGoogle Scholar
Deck, S. 2005 b Zonal detached-eddy simulation of the flow around a high-lift configuration. AIAA J. 43, 23722384.CrossRefGoogle Scholar
Dejoan, A. & Leschziner, M. A. 2004 Large eddy simulation of periodically perturbed separated flow over a backward-facing step. Intl J. Heat Fluid Flow 25, 581592.CrossRefGoogle Scholar
Devenport, W. J. & Sutton, E. P. 1991 Near-wall behavior of separated and reattaching flow. AIAA J. 29, 2531.CrossRefGoogle Scholar
Driver, D. M., Seegmiller, H. L. & Marvin, J. 1983 Unsteady behavior of a reattaching shear layer. AIAA Paper 83–1712.CrossRefGoogle Scholar
Eaton, J. K. & Johnston, J. P. 1980 Turbulent flow reattachment: an experimental study of the flow and structure behind a backward-facing step. Tech. Rep. MD 39. Department of Mechanical Engineering, Stanford University.Google Scholar
Eaton, J. K. & Johnston, J. P. 1981 A review of research on subsonic turbulent flow reattachment. AIAA J. 19, 10931100.CrossRefGoogle Scholar
Edwards, J. R. & Liou, M. S. 1998 Low-diffusion flux-splitting methods for flows at all speeds. AIAA J. 36, 16101617.CrossRefGoogle Scholar
Friedrich, R. & Arnal, M. 1990 Analysing turbulent backward-facing step flow with the lowpass-filtered Navier-Stokes equations. J. Wind Engng Ind. Aerodyn. 35, 101128.CrossRefGoogle Scholar
Glezer, A., Amitay, M. & Honohan, A. M. 2005 Aspects of low- and high-frequency aerodynamic flow control. AIAA J. 43, 15011511.CrossRefGoogle Scholar
Hasan, M. A. 1992 The flow over a backward-facing step under controlled perturbation: laminar separation. J. Fluid Mech. 238, 7396.CrossRefGoogle Scholar
Heenan, A. F. & Morrison, J. F. 1998 Passive control of pressure fluctuations generated by separated flows. AIAA J. 36, 10141022.CrossRefGoogle Scholar
Ho, C.-M. & Huang, L.-S. 2002 Subharmonics and vortex merging in mixing layer. J. Fluid Mech. 119, 443473.CrossRefGoogle Scholar
Holman, R., Utturkar, Y., Mittal, R., Smith, B. L. & Cattafesta, L. 2005 Formation criterion for synthetic jets. AIAA J. 43, 21102116.CrossRefGoogle Scholar
Huang, H. T. & Fiedler, H. E. 1997 A DPIV study of a starting flow downstream of a backward-facing step. Exps. Fluids 23, 395404.CrossRefGoogle Scholar
Hudy, L. M., Naguib, A. M. & Humphreys, W. M. 2003 Wall-pressure-array measurements beneath a separating/reattaching flow region. Phys. Fluids 15, 706717.CrossRefGoogle Scholar
Huerre, P. & Rossi, M. 1998 Hydrodynamic instabilities in open flows. In Hydrodynamics and Nonlinear Instabilities (ed. Godrèche, C. & Manneville, P.). Cambridge University Press.CrossRefGoogle Scholar
Ingard, U. 1953 On the theory and design of acoustic resonators. J. Acoust. Soc. Am. 25 (6) 10371061.CrossRefGoogle Scholar
Jovic, S. 1996 An experimental study of a separated/reattached flow behind a backward-facing step. Re H = 37, 000. NASA Tech. Mem. 110384.Google Scholar
Kiya, M. & Sasaki, K. 1985 Structure of large-scale vortices and unsteady reverse flow in the reattaching zone of a turbulent separation bubble. J. Fluid Mech. 154, 463491.CrossRefGoogle Scholar
Kiya, M., Shimizu, M. & Mochizuki, O. 1997 Sinusoidal forcing of a turbulent separation bubble. J. Fluid Mech. 342, 119139.CrossRefGoogle Scholar
Larchevêque, L., Sagaut, P., , T. H. & Comte, P. 2004 Large-eddy simulation of a compressible flow in a three-dimensional open cavity at high reynolds number. J. Fluid Mech. 516, 265301.CrossRefGoogle Scholar
Larchevêque, L., Sagaut, P., Mary, I. & Labbé, O. 2003 Large-eddy simulation of a compressible flow past a deep cavity. Phys. Fluids 15, 193210.CrossRefGoogle Scholar
Le, H., Moin, P. & Kim, J. 1997 Direct numerical simulation of turbulent flow over a backward-facing step. J. Fluid Mech. 330, 349374.CrossRefGoogle Scholar
Lee, I. & Sung, H. J. 2001 Characteristics of wall pressure fluctuations in separated and reattaching flows over a backward-facing step: Part I. Time-mean statistics and cross-spectral analyses. Exps. Fluids 30, 262272.CrossRefGoogle Scholar
Lee, I. & Sung, H. J. 2002 Multiple-arrayed pressure measurement for investigation of the unsteady flow structure of a reattaching shear layer. J. Fluid Mech. 463, 377402.CrossRefGoogle Scholar
Liu, Y. Z., Kang, W. & Sung, H. J. 2005 Assessment of the organization of a turbulent separated and reattaching flow by measuring wall pressure fluctuations. Exps. Fluids 38, 485493.CrossRefGoogle Scholar
Lund, T. S., Wu, X. & Squires, K. D. 1998 Generation of turbulent inflow data for spatially developing turbulent boundary layer simulations. J. Comput. Phys. 140, 233258.CrossRefGoogle Scholar
Mabey, D. G. 1972 Analysis and correlation of data on pressure fluctuations in separated flows. J. Aircraft 9, 642645.CrossRefGoogle Scholar
Mary, I. & Sagaut, P. 2002 LES of a flow around an airfoil near stall. AIAA J. 40, 11391145.Google Scholar
Morris, S. C. & Foss, J. F. 2003 Turbulent boundary layer to single-stream shear layer: the transition region. J. Fluid Mech. 494, 187221.CrossRefGoogle Scholar
Na, Y. & Moin, P. 1998 The structure of wall-pressure fluctuations in turbulent boundary layers with adverse pressure gradient and separation. J. Fluid Mech. 77, 347373.CrossRefGoogle Scholar
Naguib, A. M. & Hudy, L. M. 2003 Stationary and propagating low-frequency wall-pressure disturbances in a separating/reattaching flow. AIAA Paper 2003-1126.CrossRefGoogle Scholar
Narayanan, S. & Banaszuk, A. 2003 Experimental study of a novel active separation control approach. AIAA Paper 2003-60.CrossRefGoogle Scholar
Neto, A. S., Grand, D., Metais, O. & Lesieur, M. 1993 A numerical investigation of the coherent vortices in turbulence behind a backward-facing step. J. Fluid Mech. 256, 125.CrossRefGoogle Scholar
Neumann, J. & Wengle, H. 2004 a Coherent structures in controlled separated flow over sharp-edged and rounded steps. J. Turb. 5 (22) 124.CrossRefGoogle Scholar
Neumann, J. & Wengle, H. 2004 b LES of controlled turbulent flow over a rounded step. In Direct and Large Eddy Simulation V (ed. Friedrich, R. et al. ), pp. 557564. Kluwer.CrossRefGoogle Scholar
Oster, D. & Wygnanski, I. 1982 The forced mixing layer between parallel streams. J. Fluid Mech. 123, 91130.CrossRefGoogle Scholar
Péchier, M., Guillen, P. & Gayzac, R. 2001 Magnus effect over finned projectiles. J. Spacecrafts Rockets 38, 542549.CrossRefGoogle Scholar
Robinet, J.-C., Dussauge, J.-P. & Casalis, G. 2001 Wall effect on the convective-absolute boundary for the compressible shear layer. Theoret. Comput. Fluid Dyn. 15, 143163.CrossRefGoogle Scholar
Ruderich, R. & Fernholz, H. H. 1986 An experimental investigation of a turbulent shear flow with separation, reverse flow and reattachment. J. Fluid Mech. 163, 283322.CrossRefGoogle Scholar
Rusak, Z. & Eisele, I. R. 2005 Controlled manipulation of small- and large- scales in a turbulent shear layer, Part II: Stability studies. AIAA Paper 2005-4754.Google Scholar
Sagaut, P. 2002 Large-Eddy Simulation for Incompressible Flows, An Introduction, 2nd edn. Springer.Google Scholar
Sagaut, P., Garnier, E., Tromeur, E., Larchevêque, L. & Labourasse, E. 2004 Turbulent inflow conditions for les of compressible wall bounded flows. AIAA J. 42, 469477.CrossRefGoogle Scholar
Scarano, F., Benocci, C. & Riethmuller, M. L. 1999 Pattern recognition analysis of the turbulent flow past a backward facing step. Phys. Fluids 11, 38083818.CrossRefGoogle Scholar
Seifert, A., Bachart, T., Koss, D., Shepshelovich, M. & Wygnanski, I. 1993 Oscillatory blowing: a tool to delay boundary layer separation. AIAA J. 31, 20522060.CrossRefGoogle Scholar
Seifert, A. & Pack, L. G. 2002 Active flow separation control on wall-mounted hump at high Reynolds numbers. AIAA J. 40, 13631372.CrossRefGoogle Scholar
Shuster, J. M., Pink, R. J., McEligot, D. M. & Smith, D. R. 2005 The interaction of a circular synthetic jet with a cross-flow boundary layer. AIAA Paper 2005-4749.CrossRefGoogle Scholar
Sigurdson, L. W. 1995 The structure and control of a turbulent reattaching flow. J. Fluid Mech. 298, 139165.CrossRefGoogle Scholar
Simpson, R. L. 1989 Turbulent boundary-layer separation. Annu. Rev. Fluid Mech. 21, 205234.CrossRefGoogle Scholar
Smith, B. L. & Glezer, A. 2002 Jet vectoring using synthetic jets. J. Fluid Mech. 458, 134.CrossRefGoogle Scholar
Spalart, P. R. 1988 Direct simulation of a turbulent boundary layer. J. Fluid Mech. 187, 6198.CrossRefGoogle Scholar
Spazzini, P. G., Iuso, G., Onorato, M., Zurlo, N. & Cicca, G. M. D. 2001 Unsteady behavior of back-facing step flow. Exps. Fluids 30, 551561.CrossRefGoogle Scholar
Stanek, M. J., Raman, G., Kibens, V., Ross, J. A., Odedra, J. & Peto, J. W. 2000 Control of cavity resonance through very high frequency forcing. AIAA Paper 2000-1905.Google Scholar
Stanek, M. J., Raman, G., Ross, J. A., Odedra, J., Peto, J., Alvi, F. & Kibens, V. 2002 a High frequency acoustic suppression – The role of mass flow, the notion of superposition and the role of inviscid instability – A new model (Part II). AIAA Paper 2002-2404.Google Scholar
Stanek, M. J., Sinha, N., Seiner, J. M., Pearce, B. & Jones, M. I. 2002 b High frequency flow control – Suppression of aero-optics in tactical directed energy beam propagation & The birth of a new model (Part I). AIAA Paper 2002-2272.Google Scholar
Tihon, J., Legrand, J. & Legentilhomme, P. 2001 Near-wall investigation of backward-facing step flows. Exps. Fluids 31, 484493.CrossRefGoogle Scholar
Troutt, T. R., Sheelke, B. & Norman, T. R. 1984 Organized structures in a reattaching separated flow field. J. Fluid Mech. 143, 413427.CrossRefGoogle Scholar
Vreman, A. W. 1995 Direct and large eddy simulation of the compressible turbulent mixing layer. PhD thesis, University of Twente, Twente.CrossRefGoogle Scholar
Vukasinovic, B., Lucas, D. G. & Glezer, A. 2005 Controlled manipulation of small- and large- scales in a turbulent shear layer, Part I: Experimental studies. AIAA Paper 2005-4753.Google Scholar
Wengle, H., Huppertz, A., Bärwolff, G. & Janke, G. 2001 The manipulated transitional backward-facing step flow: an experimental and direct numerical simulation investigation. Eur. J. Mech. B Fluids 20, 2546.CrossRefGoogle Scholar
Wiltse, J. M. & Glezer, A. 1998 Direct excitation of small-scale motions in free shear flows. Phys. Fluids 20, 2546.Google Scholar
Yang, Z. & Voke, P. R. 2001 Large-eddy simulation of boundary-layer separation and transition at a change of surface curvature. J. Fluid Mech. 439, 305333.CrossRefGoogle Scholar
Yoshioka, S., Obi, S. & Masuda, S. 2001 a Organized vortex motion in periodically perturbed turbulent separated flow over a backward-facing step. Intl J. Heat Fluid Flow 22, 301307.CrossRefGoogle Scholar
Yoshioka, S., Obi, S. & Masuda, S. 2001 b Turbulence statistics of periodically perturbed flow over backward facing step. Intl J. Heat Fluid Flow 22, 393401.CrossRefGoogle Scholar