Article contents
A numerical nonlinear analysis of the flow around two- and three-dimensional partially cavitating hydrofoils
Published online by Cambridge University Press: 26 April 2006
Abstract
The partially cavitating two-dimensional hydrofoil problem is treated using nonlinear theory by employing a low-order potential-based boundary-element method. The cavity shape is determined in the framework of two independent boundary-value problems; in the first, the cavity length is specified and the cavitation number is unknown, and in the second the cavitation number is known and the cavity length is to be determined. In each case, the position of the cavity surface is determined in an iterative manner until both a prescribed pressure condition and a zero normal velocity condition are satisfied on the cavity. An initial approximation to the nonlinear cavity shape, which is determined by satisfying the boundary conditions on the hydrofoil surface rather than on the exact cavity surface, is found to differ only slightly from the converged nonlinear result.
The boundary element method is then extended to treat the partially cavitating three-dimensional hydrofoil problem. The three-dimensional kinematic and dynamic boundary conditions are applied on the hydrofoil surface underneath the cavity. The cavity planform at a given cavitation number is determined via an iterative process until the thickness at the end of the cavity at all spanwise locations becomes equal to a prescribed value (in our case, zero). Cavity shapes predicted by the present method for some three-dimensional hydrofoil geometries are shown to satisfy the dynamic boundary condition to within acceptable accuracy. The method is also shown to predict the expected effect of foil thickness on the cavity size. Finally, cavity planforms predicted from the present method are shown to be in good agreement to those measured in a cavitating three-dimensional hydrofoil experiment, performed in MIT's cavitation tunnel.
- Type
- Research Article
- Information
- Copyright
- © 1993 Cambridge University Press
References
- 114
- Cited by