Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-22T01:44:18.809Z Has data issue: false hasContentIssue false

A numerical investigation of the Stokes boundary layer in the turbulent regime

Published online by Cambridge University Press:  14 October 2021

S. Salon
Affiliation:
Dipartimento di Ingegneria Civile e Ambientale, Università degli Studi di Trieste, Trieste, Italy Istituto Nazionale di Oceanografia e di Geofisica Sperimentale – OGS, Sgonico, Italy
V. Armenio*
Affiliation:
Dipartimento di Ingegneria Civile e Ambientale, Università degli Studi di Trieste, Trieste, Italy
A. Crise
Affiliation:
Istituto Nazionale di Oceanografia e di Geofisica Sperimentale – OGS, Sgonico, Italy
*
Author to whom correspondence should be addressed: [email protected]

Abstract

The Stokes boundary layer in the turbulent regime is investigated by using large-eddy simulations (LES). The Reynolds number, based on the thickness of the Stokes boundary layer, is set equal to Reδ = 1790, which corresponds to test 8 of the experimental study of Jensen et al. (J. Fluid Mech. vol. 206, 1989, p. 265).

Our results corroborate and extend the findings of relevant experimental studies: the alternating phases of acceleration and deceleration are correctly reproduced, as is the sharp transition to turbulence, observable at a phase angle between 30° and 45°, and its maximum between 90° and 105°. Overall, a very good agreement was found between our LES first- and second-order turbulent statistics and those of Jensen et al. (1989). Some discrepancies were observed when comparing turbulent intensities in the phases of the cycle characterized by a low level of turbulent activity.

In the central part of the cycle, namely from the mid acceleration to the late deceleration phases, fully developed equilibrium turbulence is present in the flow field, and the boundary layer resembles that of a canonical, steady, wall-bounded flow. In those phases characterized by low turbulent activity, two separate regions can be detected in the flow field: a near-wall one, where the vertical turbulent kinetic energy varies much more rapidly than the other two components, thus giving rise to the formation of horizontal, pancake-like turbulence; and an outer region where both vertical and spanwise velocity fluctuations vary much faster than the streamwise ones, hence producing cigar-like turbulence.

As a side result, the range of application of the plane-averaged dynamic mixed model was assessed based on the qualitative behaviour over the cycle of a significant parameter representing the ratio between a turbulent time scale and a free-stream time scale associated with the oscillatory motion.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhavan, R., Kamm, R. D. & Shapiro, A. H. 1991a. An investigation of transition to turbulence in bounded oscillatory Stokes flows. Part 1. Experiments. J. Fluid Mech. 225, 395.10.1017/S0022112091002100CrossRefGoogle Scholar
Akhavan, R., Kamm, R. D. & Shapiro, A. H. 1991b. An investigation of transition to turbulence in bounded oscillatory Stokes flows. Part 2. Numerical simulations. J. Fluid Mech. 225, 423.CrossRefGoogle Scholar
Armenio, V. & Piomelli, U. 2000 A Lagrangian mixed subgrid-scale model in generalized coordinates. Flow Turbulence Combust. 65, 51.CrossRefGoogle Scholar
Armenio, V. & Sarkar, S. 2002 An investigation of stably-stratified turbulent channel flow using large eddy simulation. J. Fluid Mech. 459, 1.10.1017/S0022112002007851CrossRefGoogle Scholar
Armenio, V. & Sarkar, S. 2004 Mixing in a stably-stratified medium by horizontal shear near vertical walls. Theor. Comp. Fluid Dyn. 17 (5–6).10.1007/s00162-004-0121-9CrossRefGoogle Scholar
Bardina, J., Ferziger, J. H. & Reynolds, W. C. 1980 Improved subgrid scale models for large eddy simulation. AIAA Paper 80-1357.Google Scholar
Blondeaux, P. & Seminara, G. 1979 Transizione incipiente al fondo di un'onda di gravitá. Rend. fisici Accad. Lincei, serie 8, LXVII.Google Scholar
Calhoun, R. J. & Street, R. L. 2001 Turbulent flow over a wavy surface: Neutral case. J. Geoph. Res. 106 (C5), 9277.10.1029/2000JC900133CrossRefGoogle Scholar
Costamagna, P., Vittori, G. & Blondeaux, P. 2003 Coherent structures in oscillatory boundary layers. J. Fluid Mech. 474, 1.CrossRefGoogle Scholar
Cui, A. & Street, R. L. 2001 Large-eddy simulation of turbulent rotating convective flow development. J. Fluid Mech. 447, 53.CrossRefGoogle Scholar
Ding, L. & Street, R. L. 2003 Numerical study of the wake structure behind a three-dimensional hill. J. Atmos. Sci. 60, 1678.10.1175/1520-0469(2003)060<1678:NSOTWS>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Dubief, Y. & Delcayre, F. 2000 On coherent-vortex identification in turbulence. J. Turbulence 3, 008.Google Scholar
Falcomer, L. & Armenio, V. 2002 Large-eddy simulation of secondary flow over longitudinally-ridged walls. J. Turbulence 1, 011.Google Scholar
Fredsøe, J., Sumer, B. M., Laursen, T. S. & Pedersen, C. 1993 Experimental investigation of wave boundary layers with a sudden change in roughness. J. Fluid Mech. 252, 117.10.1017/S0022112093003696CrossRefGoogle Scholar
Germano, M., Piomelli, U., Moin, P. & Cabot, W. H. 1991 A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3, 1760.Google Scholar
Greenblatt, D. & Moss, E. 2004 Rapid temporal acceleration of a turbulent pipe flow. J. Fluid Mech. 514, 65.10.1017/S0022112004000114CrossRefGoogle Scholar
Gullbrand, J. & Chow, F. K. 2003 The effect of numerical errors and turbulence models in large-eddy simulations of channel flow, with and without explicit filtering. J. Fluid Mech. 495, 323.10.1017/S0022112003006268CrossRefGoogle Scholar
Henn, D. S. & Sykes, R. I. 1999 Large eddy simulation of flow over wavy surfaces. J. Fluid Mech. 383, 75.10.1017/S0022112098003723CrossRefGoogle Scholar
Hino, M., Kashiwayanagi, M., Nakayama, A. & Hara, T. 1983 Experiments on the turbulence statistics and the structure of a reciprocating oscillatory flow. J. Fluid Mech. 131, 363.10.1017/S0022112083001378CrossRefGoogle Scholar
Hino, M., Sawamoto, M. & Takasu, S. 1976 Experiments on transition to turbulence in an oscillatory pipe flow. J. Fluid Mech. 75, 193.Google Scholar
Hsu, C.-T., Lu, X. & Kwan, M.-K. 2000 LES and RANS studies of oscillating flows over flat plate. Trans. ASCE: J. Engng Mech. 126, 186.Google Scholar
Hunt, J. C. R., Wray, A. A. & Moin, P. 1988 Eddies, streams and convergence zones in turbulent flows. Center of Turbulence Research (Proc. Summer Program, 1988), p. 193.Google Scholar
Jensen, B. L., Sumer, B. M. & Fredsøe, J. 1989 Turbulent oscillatory boundary layers at high Reynolds numbers. J. Fluid Mech. 206, 265.10.1017/S0022112089002302CrossRefGoogle Scholar
Kamphuis, J. W. 1975 Friction factor under oscillatory waves. J. Waterways, Port Coastal Engng Div. ASCE 101 (WW2), 135.Google Scholar
Lam, K. & Banerjee, S. 1992 On the condition of streak formation in a bounded turbulent flow. Phys. Fluids A 4, 306.CrossRefGoogle Scholar
Lilly, D. K. 1992 A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A 4, 633.10.1063/1.858280CrossRefGoogle Scholar
Lodahl, C. R., Sumer, B. M. & Fredsøe, J. 1998 Turbulent combined oscillatory flow and current in a pipe. J. Fluid Mech. 373, 313.10.1017/S0022112098002559CrossRefGoogle Scholar
Lohmann, I., Fredsøe, J., Sumer, B. M. & Christiensen, E. D. 2006 Large eddy simulation of the ventilated wave boundary layer. J. Geophys. Res. – Oceans 111, CO6036, doi:10.1029/2005JC002946.CrossRefGoogle Scholar
Lumley, J. L. 1978 Computational modelling of turbulent flows. Adv. Appl. Mech. 18, 123.CrossRefGoogle Scholar
Lund, T. S. 1997 On the use of discrete filters for large eddy simulations. Annual Research Briefs 1997, p. 83. Center for Turbulence Research, NASA Ames-Stanford University.Google Scholar
Lund, T. S. & Kaltenbach, H.-J. 1995 Experiments with explicit filtering for LES using a finite-difference method. Annual Research Briefs 1995, p. 91. Center for Turbulence Research, NASA Ames-Stanford University.Google Scholar
Mansour, N. N., Kim, J. & Moin, P. 1988 Reynolds-stresses and dissipation-rate budgets in a turbulent channel flow. J. Fluid Mech. 194, 15.CrossRefGoogle Scholar
Meneveau, C., Lund, T. S. & Cabot, W. H. 1996 A Lagrangian dynamic subgrid-scale model of turbulence. J. Fluid Mech. 319, 353.CrossRefGoogle Scholar
Moin, P. & Mahesh, K. 1998 Direct numerical simulation: a tool in turbulence research. Annu. Rev. Fluid Mech. 30, 539.10.1146/annurev.fluid.30.1.539CrossRefGoogle Scholar
Narasimha, R. & Sreenivasan, K. R. 1973 Relaminarization in higly accelerated turbulent boundary layers. J. Fluid Mech. 61, 417.10.1017/S0022112073000790CrossRefGoogle Scholar
Piomelli, U. 2004 Large eddy and direct simulation of turbulent flows. In Introduction to Turbulent Modeling V, VKI Lecture Series 2004–06Google Scholar
Piomelli, U. & Balaras, E. 2002 Wall-layer models for large-eddy simulations. Annu. Rev. Fluid Mech. 34, 349.CrossRefGoogle Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.10.1017/CBO9780511840531CrossRefGoogle Scholar
Robinson, S. K. 1991 Coherent motions on the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601.CrossRefGoogle Scholar
Sarghini, F., Piomelli, U. & Balaras, E. 1999 Scale similar models for large-eddy simulations. Phys. Fluids 11, 1596.10.1063/1.870021CrossRefGoogle Scholar
Sarpkaya, T. 1993 Coherent structures in oscillatory boundary layers. J. Fluid Mech. 253, 105.10.1017/S0022112093001739CrossRefGoogle Scholar
Scotti, A. & Piomelli, U. 2001 Numerical simulation of pulsating turbulent channel flow. Phys. Fluids 13, 1367.10.1063/1.1359766CrossRefGoogle Scholar
Shao, L., Sarkar, S., Pantano, C. 1999 On the relationship between the mean flow and subgrid stresses in large eddy simulation of turbulent shear flows. Phys. Fluids 11, 1229.CrossRefGoogle Scholar
Smagorinsky, J. 1963 General circulation experiments with the primitive equations. I. The basic experiment. Mon. Weath. Rev. 91, 99.10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;22.3.CO;2>CrossRefGoogle Scholar
Spalart, P. R. & Baldwin, B. S. 1987 Direct simulation of a turbulent oscillating boundary layer. Turbulent Shear Flows 6 Springer.Google Scholar
Spalart, P. R., Jou, W.-H., Strelets, M. & Allmaras, S. R. 1997 Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. First AFOSR Int. Conference on DNS/LES, Ruston, LA, 4–8, August 1997, In Advanced in DNS/LES (ed. Liu, C. & Liu, Z.) Greyden, Columbus, OH.Google Scholar
Sreenivasan, K. R. 1995 On the universality of the Kolmogorov constant. Phys. Fluids 7, 2778.CrossRefGoogle Scholar
Sumer, B. M., Laursen, T. S. & Fredsøe, J. 1993 Wave boundary layers in a convergent tunnel. Coastal Engng. 20, 317.CrossRefGoogle Scholar
Vittori, G. & Verzicco, R. 1998 Direct simulation of transition in an oscillatory boundary layer. J. Fluid Mech. 371, 207.CrossRefGoogle Scholar
Vreman, B., Guerts, B. & Kuerten, H. 1994 On the formulation of the dynamic mixed subgrid-scale model. Phys. Fluids 6, 4057.CrossRefGoogle Scholar
Wallace, J. M., Eckelmann, H. & Brodkey, R. S. 1972 The wall region in turbulent shear flow. J. Fluid Mech. 54, 39.CrossRefGoogle Scholar
Wu, X. & Squires, K. D. 1998 Numerical investigation of the turbulent boundary layer over a bump. J. Fluid Mech. 362, 229.10.1017/S0022112098008982CrossRefGoogle Scholar
Zang, Y., Street, R. L. & Koseff, J. R. 1994 A non-staggered grid, fractional step method for time-dependent incompressible Navier-Stokes equations in curvilinear co-ordinates. J. Comput. Phys. 114, 18.10.1006/jcph.1994.1146CrossRefGoogle Scholar