Article contents
Numerical and laboratory investigation of breaking of steep two-dimensional waves in deep water
Published online by Cambridge University Press: 27 January 2010
Abstract
The paper extends a pilot study into a detailed investigation of properties of breaking waves and processes responsible for breaking. Simulations of evolution of steep to very steep waves to the point of breaking are undertaken by means of the fully nonlinear Chalikov–Sheinin model. Particular attention is paid to evolution of nonlinear wave properties, such as steepness, skewness and asymmetry, in the physical, rather than Fourier space, and to their interplay leading to the onset of breaking. The role of superimposed wind is also investigated. The capacity of the wind to affect the breaking onset is minimal unless the wind forcing is very strong. Wind is, however, important as a source of energy for amplification of the wave steepness and ultimately altering the breaking statistics. A detailed laboratory study is subsequently described. The theoretical predictions are verified and quantified. In addition, some features of the nonlinear development not revealed by the model (i.e. reduction of the wave period which further promotes an increase in steepness prior to breaking) are investigated. Physical properties of the incipient breaker are measured and examined, as well as characteristics of waves both preceding and following the breaker. The experiments were performed both with and without a superimposed wind, the role of which is also investigated. Since these idealized two-dimensional results are ultimately intended for field applications, tentative comparisons with known field data are considered. Limitations which the modulational instability mechanism can encounter in real broadband three-dimensional environments are highlighted. Also, substantial examination of existing methods of breaking onset detection are discussed and inconsistencies of existing measurements of breaking rates are pointed out.
- Type
- Papers
- Information
- Copyright
- Copyright © Cambridge University Press 2010
References
REFERENCES
- 75
- Cited by