Published online by Cambridge University Press: 12 April 2006
After a careful consideration of the laws of generation, advection, diffusion and dissipation of turbulent kinetic energy proposed by Prandtl (1945) and Emmons (1954), equations of motion and turbulent kinetic energy for the vortex flow near a solid end wall are established. These equations are then evaluated by a numerical procedure. Care is taken to specify boundary conditions such that satisfactory matching of the solution with the main vortex is assured. The agreement between the predicted mean velocity distribution and the experimental data is remarkably good. In addition, several interesting characteristics are predicted by the theory: (i) the vertical distribution of horizontal velocity is oscillatory in the inner region, whilst it is of the ordinary boundary-layer type in the outer region; (ii) the maximum velocity in the boundary layer can exceed that in the main vortex by a considerable amount and (iii) the minimum pressure of the vortex does not occur in the vortex-core root as has been generally believed.