Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T16:32:54.134Z Has data issue: false hasContentIssue false

The nozzle-fluid concentration field of the round, turbulent, free jet

Published online by Cambridge University Press:  28 March 2006

H. A. Becker
Affiliation:
Department of Chemical Engineering, Massachusetts Institute of Technology Present address: Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada.
H. C. Hottel
Affiliation:
Department of Chemical Engineering, Massachusetts Institute of Technology
G. C. Williams
Affiliation:
Department of Chemical Engineering, Massachusetts Institute of Technology

Abstract

The light-scatter technique has been used to study the nozzle-fluid concentration field in an isothermal, turbulent, axisymmetric air/air free jet with the nozzle air marked by an oil smoke. The data on the mean concentration field appear to be the most accurate yet obtained, due to the peculiar advantages of the technique. The turbulent concentration fluctuations have been characterized as to intensity, spectral distribution, and two-point correlation. The intermittency factor has been measured and the properties of the turbulent fluid computed. Comparison with the results of other investigators who used heat to mark the nozzle fluid indicates a close similarity between the concentration and temperature fields.

Type
Research Article
Copyright
© 1967 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Becker, H. A. 1961 Concentration fluctuations in ducted jet mixing. Sci. D. dissertation, Mass. Inst. Tech.
Becker, H. A., Hottel, H. C. & Williams, G. C. 1963 Ninth Symposium (International) on Combustion, p. 7.
Becker, H. A., Hottel, H. C. & Williams, G. C. 1965 Tenth Symposium (International) on Combustion, p. 1253.
Becker, H. A., Hottel, H. C. & Williams, G. C. 1967 J. Fluid Mech. 30, 259.
Becker, H. A., Rosensweig, R. E. & Gwozdz, J. R. 1963 Turbulent dispersion in a pipe flow. Air Force Cambridge Research Laboratories Rept. no. AFC RL-63-727. Bedford, Mass.
Becker, H. A., Rosensweig, R. E. & Gwozdz, J. R. 1966 A.I.Ch.E. J. 12, 964.
Corrsin, S. 1943 NACA Wartime Rept. no. W-94.
Corrsin, S. & Kistler, A. L. 1955 NACA Rept. no. 1244.
Corrsin, S. & Uberoi, M. S. 1950 NACA Rept. no. 998.
Corrsin, S. & Uberoi, M. S. 1951 NACA Rept. no. 1040.
Forstall, W. & Gaylord, E. W. 1955 J. Appl. Mech. 22, 161.
Gibson, M. M. 1962 Nature, Land. 195, 1281.
Gibson, M. M. 1963 J. Fluid Mech. 15, 161.
Hinze, J. O. 1959 Turbulence. New York: McGraw-Hill Book Co. Inc.
Hinze, J. O. & Van der hegge zijnen, B. G. 1949 Appl. Sci. Res., Hague A 1, 435.
Keagy, W. R. & Weller, A. E. 1949 Heat Transfer and Fluid Mechanics Institute, p. 89. Berkeley, California.
Kizer, K. M. 1963 A.I.Ch.E.J. 9, 386.
Kristmanson, D. & Danckwerts, P. V. 1961 Chem. Engng Sci. 16, 267.
Laurence, J. C. 1956 NACA Rept. no. 1292.
Rosensweig, R. E. 1959 Measurement and characterization of turbulent mixing. Sci. D. dissertation, Mass. Inst. Tech.
Rosensweig, R. E., Hottel, H. C. & Williams, G. C. 1961 Chem. Engng Sci. 15, 111.
Ruden, P. 1933 Naturwissenschaften, 21, 375.
Snavala, P. D., Hulse, C. & Thring, M. W. 1957 Combust. Flame, 1, 179.
Wilson, R. A. M. & Danckwerts, P. V. 1964 Chem. Engng Sci. 19, 885.