Published online by Cambridge University Press: 28 March 2006
Most treatments of magnetohydrodynamics waves have confined physical interpretation to cases when the Alfvén velocity a1 is small compared with the sound velocity a0. Here we consider the ‘low-beta situation’, in which a1, the only possible waves are longitudinal ones, propagated unidirectionally along lines of magnetic force with velocity a0. These can be interpreted as sound waves, confined to effectively rigid magnetic tubes of force. Hall-current effects do not alter these conclusions (in contrast to the high-beta situation), and finite conductivity introduces only small dissipation.
An application is made to the flow pattern around a body moving through the F2 layer of the ionosphere, where, although neutral particles have a very large mean free path, charged particles interact electrostatically and, it is argued, may be regarded as forming a continuous fluid whose movement is independent of that of the neutral particles. A body moving at satellite speed or below would then excite the above-mentioned unidirectional sound waves, but no waves at much faster Alfvén velocity. These considerations suggest that its movement would be accompanied by a [xvee ]-shaped pattern of electron density (figure 2), which might be in part responsible for some anomalous radar echoes that have been reported.