Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-17T16:14:02.107Z Has data issue: false hasContentIssue false

A note on the stability of a family of space-periodic Beltrami flows

Published online by Cambridge University Press:  21 April 2006

D. Galloway
Affiliation:
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Strasse 1, D-8046 Garching bei München, FRG
U. Frisch
Affiliation:
CNRS, Observatoire de Nice, BP139, 06003 Nice Cedex, France

Abstract

The linear stability of the ‘ABC’ flows u = (A sinz + C cosy, B sinx + A cosz, C siny + B cosx) is investigated numerically, in the presence of dissipation, for the case where the perturbation has the same 2π-periodicity as the basic flow. Above a critical Reynolds number, the flows are in general found to be unstable, with a growth time that becomes comparable to the dynamical timescale of the flow as the Reynolds number becomes large. The fastest-growing disturbance field is spatially intermittent, and reaches its peak intensity in features which are localized within or at the edge of regions where the undisturbed flow is chaotic, as occurs in the corresponding MHD problem.

Type
Research Article
Copyright
© 1987 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnol'D, V. I.1965 Sur la topologie des écoulements stationnaires des fluides parfaits. C. R. Acad. Sci. Paris 261, 1720.Google Scholar
Arnol'D, V. I. & Korkina, E. I.1983 The growth of a magnetic field in a steady incompressible flow. Vest. Mosk. Un. Ta. Ser. 1 Matematika Mecanika 3, 4346 (in Russian).Google Scholar
Bayly, B. J. & Yakhot, V. 1986 Positive and negative effective viscosity phenomena in isotropic and anisotropic Beltrami flows. Phys. Rev. A 34, 381391.Google Scholar
Childress, S. 1970 New solutions of the kinematic dynamo problem. J. Math. Phys. 11, 30633076.Google Scholar
Childress, S. 1979 Alpha-effect in flux ropes and sheets. Phys. Earth Planet. Inter. 20, 172180.Google Scholar
Dombre, T., Frisch, U., Greene, J. M., Hénon, M., Mehr, A. & Soward, A. M. 1986 Chaotic streamlines in the ABC flows. J. Fluid Mech. 167, 353391.Google Scholar
Galloway, D. J. & Frisch, U. 1984 A numerical investigation of magnetic field generation in a flow with chaotic streamlines. Geophys. Astrophys. Fluid Dyn. 29, 1318.Google Scholar
Galloway, D. J. & Frisch, U. 1986 Dynamo action in a family of flows with chaotic streamlines. Geophys. Astrophys. Fluid Dyn. 36, 5383.Google Scholar
Green, J. S. A. 1974 Two-dimensional turbulence near the viscous limit. J. Fluid Mech. 62, 273287.Google Scholar
HÉnon, M. 1966 Sur la topologie des lignes de courant dans un cas particulier. C. R. Acad. Sci. Paris 262, 312314.Google Scholar
Meneguzzi, M., Frisch, U. & Pouquet, A. 1981 Helical and nonhelical turbulent dynamos. Phys. Rev. Lett. 47, 10601064.Google Scholar
Meshalkin, L. D. & Sinai, Ia. G. 1961 Investigation of the stability of a stationary solution of equations for the plane movement of an incompressible viscous liquid. Prikl. Math. Mech. 25, 17001705.Google Scholar
Moffatt, H. K. 1985 Magnetostatic equilibria and analogous Euler flows of arbitrarily complex topology. Part 1. Fundamentals. J. Fluid Mech. 159, 359378.Google Scholar
Moffatt, H. K. 1986 Magnetostatic equilibria and analogous Euler flows of arbitrarily complex topology. Part 2. Stability considerations. J. Fluid Mech. 166, 359378.Google Scholar
Moffatt, H. K. & Proctor, M. R. E. 1985 Topological constraints associated with fast dynamo action. J. Fluid Mech. 154, 493507.Google Scholar
Soward, A. M. 1987 Fast dynamo action in a steady flow. J. Fluid Mech. 180, 267295.Google Scholar
Zeldovich, Ya. B., Ruzmaikin, A. A. & Sokoloff, D. D. 1983 Magnetic Fields in Astrophysics. Gordon and Breach.