Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-20T06:02:48.914Z Has data issue: false hasContentIssue false

Note on the Faxén relations for a particle in Stokes flow

Published online by Cambridge University Press:  19 April 2006

J. M. Rallison
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge

Abstract

The Faxén relations for a rigid particle in an arbitrary Stokes flow are generalized to give expressions for the stresslet (and higher stress moments) exerted by the particle on the fluid, and also to viscous drops immersed in a viscous fluid.

Type
Research Article
Copyright
© 1978 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Batchelor, G. K. 1970 The stress system in a suspension of force-free particles. J. Fluid Mech. 41, 545.Google Scholar
Batchelor, G. K. & Green, J. T. 1972 The hydrodynamic interaction of two small freely moving spheres in a linear flow field. J. Fluid Mech. 56, 375.Google Scholar
Brenner, H. 1963 The Stokes resistance of an arbitrary particle I. Chem. Engng Sci. 18, 1.CrossRefGoogle Scholar
Brenner, H. 1964 The Stokes resistance of an arbitrary particle IV. Arbitrary fields of flow. Chem. Engng Sci. 19, 703.Google Scholar
Cerf, R. 1951 Théorie de l'effet Maxwell des suspensions de sphères élastiques. J. Chim. Phys. 48, 59.Google Scholar
Chwang, A. T. 1975 Hydromechanics of low-Reynolds-number flow. Part 3. Motion of spheroidal particles in quadratic flows. J. Fluid Mech. 72, 17.Google Scholar
Cox, R. G. 1969 The deformation of a drop in a general time-dependent fluid flow. J. Fluid Mech. 37, 601.Google Scholar
Faxén, H. 1924 Der Widerstand gegen die Bewegung einer starren Kugel in einer zähen Flüssigkeit, die zwischen zwei parallelen, ebener Wänden eigeschlossen ist. Arkiv Mat. Aston. Fys. 18 (29), 3.Google Scholar
Happel, J. & Brenner, H. 1965 Low Reynolds Number Hydrodynamics. Prentice-Hall.Google Scholar
Hetsroni, G. & Haber, S. 1970 Flow in and around a droplet or bubble submerged in an unbound arbitrary velocity field. Rheol. Acta 9, 488.Google Scholar
Hinch, E. J. 1972 Note on the symmetrics of certain material tensors for a particle in Stokes flow. J. Fluid Mech. 54, 423.Google Scholar
Jeffery, G. B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. Roy. Soc. A 102, 161.Google Scholar
Rallison, J. M. 1977 Ph.D. dissertation, Cambridge University.Google Scholar