Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T10:47:28.689Z Has data issue: false hasContentIssue false

A note on the angular dispersion of a fluid line element in isotropic turbulence

Published online by Cambridge University Press:  29 March 2006

S. Corrsin
Affiliation:
Mechanics Department, The Johns Hopkins University
M. J. Karweit
Affiliation:
Mechanics Department, The Johns Hopkins University

Abstract

The mean-square angular displacement of a fluid material line element is expressed as an integral of the corresponding angular velocity in material coordinates, with forms like those in Taylor's (1921) linear displacement analysis. Measurements using a hydrogen-bubble tracer in isotropic turbulence show that the mean-square angular velocity of a line is of the same order of magnitude as the mean-square vorticity, and that its ‘Lagrangian’ integral time scale is of the order of the inverse of the r.m.s. vorticity. The angular velocity of a line element is also formulated in spatial co-ordinates. Finally, the connexion between angular dispersion and the approach toward isotropy is pointed out.

Type
Research Article
Copyright
© 1972 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. 1952 Proc. Roy. Soc. A 213, 349.
Batchelor, G. K. 1953 The Theory of Homogeneous Turbulence, p. 86. Cambridge University Press.
Batchelor, G. K. & Townsend, A. A. 1956 In Surveys in Mechanics (ed. G. K. Batchelor & R. M. Davies). Cambridge University Press.
Comte-Bellot, G. & Corrsin, S. 1966 J. Fluid Mech. 25, 657.
Comte-Bellot, G. & Corrsin, S. 1971 J. Fluid Mech. 48, 273.
Corrsin, S. 1962 In Mécanique de la Turbulence. Paris: C.N.R.S.
Corrsin, S. & Karweit, M. J. 1969 J. Fluid Mech. 39, 87.
Karweit, M. J. 1968 M.S.E. thesis, The Johns Hopkins University.
Lumley, J. L. 1962 In Mécanique de la Turbulence. Paris: C.N.R.S.
Lumley, J. L. 1970 Stochastic Tools in Turbulence, 3.9. Academic.
O'’rien, E. E. 1963 On the behaviour of passive scalars in a turbulent fluid. State University of New York, Stony Brook Rep.Google Scholar
Taylor, G. I. 1921 Proc. Lond. Math. Soc. 20, 196.
Townsend, A. A. 1951 Proc. Roy. Soc. A 209, 418.
Townsend, A. A. 1954 Proc. Roy. Soc. A 224, 487.