Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-08T21:53:19.054Z Has data issue: false hasContentIssue false

A note on complete sets of material conservation laws

Published online by Cambridge University Press:  26 April 2006

Joseph Egger
Affiliation:
Meteorologisches Institut, Universität München, Theresienstrasse 37, D-8000, München 2, FRG

Abstract

An attempt is made to derive complete sets of conservation laws for various flows. It is shown that the equations of three-dimensional adiabatic flow cannot be transformed into a complete set of conservation laws. It is demonstrated that potential vorticity is the only material invariant of shallow-water flow. A complete set can be derived for three-dimensional homogeneous flow, if Lagrangian tracers are added.

Type
Research Article
Copyright
© 1989 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bryan, K.: 1987 Potential vorticity in the models of the ocean circulation. Q. J. R. Met. Soc. 113, 713733.Google Scholar
Dikyi, I.: 1972 A comment on the adiabatic-flow invariants suggested by Hollmann. Izv. Atmos. Ocean. Phys. 8, 321323 (English Transl. 182–183).Google Scholar
Ertel, H.: 1942 Ein neuer hydrodynamischer Wirbelsatz. Met. Z. 59, 277281.Google Scholar
Ertel, H. & Rossby, C. G., 1949 Ein neuer Erhaltungssatz der Hydrodynamik. Sitz.-Ber. Dtsch. Akad. Wiss. Berlin, Kl. f. Math. u. allg. Naturw. Nr. 1.Google Scholar
Fortak, H.: 1956 Zur Frage allgemeiner hydrodynamischer Wirbelsätze. Gerl. Beitr. Geophys. 65, 283294.Google Scholar
Hollmann, G.: 1964 Ein vollständiges System hydrodynamischer Erhaltungssätze. Arch. Met. Geoph. Biokl. A 14, 113.Google Scholar
Hollmann, G.: 1965 Über eine hydrodynamische Vertauschungsrelation und einige quasistatische Formen hydrodynamischer Erhaltungssätze. Beitr. Phys. Atm. 38, 5765.Google Scholar
Hoskins, B., McIntyre, M. & Robertson, A., 1985 On the use and significance of isentropic potential vorticity maps. Q. J. R. Met. Soc. 111, 877946.Google Scholar
McWilliams, J. & Gent, P., 1980 Intermediate models of planetary circulations in the atmosphere and the ocean. J. Atmos. Sci. 37, 16571678.Google Scholar
Mobbs, S.: 1981 Some vorticity theorems and conservation laws for non-barotropic fluids. J. Fluid Mech. 108, 475483.Google Scholar
Salmon, R.: 1985 New equations for nearly geostrophic flow. J. Fluid Mech. 153, 461477.Google Scholar
Serrin, J.: 1959 Mathematical principles of classical fluid mechanics. In Handbuch der Physik, Vol. VIII/1; Strömungsmechanik (ed. Flügge und Truesdell), pp. 125262. Springer.