Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T16:27:18.506Z Has data issue: false hasContentIssue false

Normal-mode linear analysis and initial conditions of capillary jets

Published online by Cambridge University Press:  25 April 2008

F. J. GARCÍA
Affiliation:
Departamento de Física Aplicada I, Escuela Técnica Superior de Ingeniería Informática, Universidad de Sevilla, Avenida Reina Mercedes s/n, 41012 Sevilla, Spain Group of Electrohydrodynamics and Cohesive Granular Media, Facultad de Física, Universidad de Sevilla, Avenida Reina Mercedes s/n, 41012 Sevilla, Spain
H. GONZÁLEZ
Affiliation:
Departamento de Física Aplicada III, Escuela Técnica Superior de Ingenieros, Universidad de Sevilla, Camino de los Descubrimientos s/n, 41092 Sevilla, Spain Group of Electrohydrodynamics and Cohesive Granular Media, Facultad de Física, Universidad de Sevilla, Avenida Reina Mercedes s/n, 41012 Sevilla, Spain

Abstract

The normal-mode linear analysis of an axisymmetric infinite capillary jet is generalized to account for arbitrary initial conditions. An exhaustive study of the dispersion relation reveals the parametric behaviour of all eigenvalues and their corresponding normal modes. The two capillary modes (dominant and subdominant) are found to be necessary and sufficient to describe any possible non-recirculating initial conditions. An infinite set of other modes accounts for initial conditions with recirculating velocity field. The predictions of the normal-mode analysis are contrasted against previous computations of the initial-value problem, previous experiments, and our own one-dimensional numerical simulations. Contrary to the claim of some authors, the normal-mode analysis accurately predicts the initial transient with non-exponential growth of the disturbance amplitude observed in previous works. Simple and accurate formulae for the duration of the initial transient are deduced, with emphasis on improving the growth-rate measurement.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alakoç, U., Megaridis, C. M., McNallan, M. & Wallace, D. B. 2004 Dynamic surface tension measurements with submillisecond resolution using a capillary-jet instability technique. J. Colloid Interface Sci. 276, 379391.CrossRefGoogle ScholarPubMed
Apfel, R. E., Tian, Y., Jankovsky, J., Shi, T., Chen, X., Holt, R. G., Trinh, E., Croonquist, A., Thornton, K. C., Sacco, A. Jr, Coleman, C., Leslie, F. W. & Matthiesen, D. H. 1997 Free oscillations and surfactant studies of superdeformed drops in microgravity. Phys. Rev. Lett. 78 (10), 19121915.CrossRefGoogle Scholar
Ashgriz, N. & Mashayek, F. 1995 Temporal analysis of capillary jet breakup. J. Fluid Mech. 291, 163190.CrossRefGoogle Scholar
Basaran, O. A. 2002 Small-scale free surface flows with breakup: drop formation and emerging applications. AIChE J. 48, 18421848.CrossRefGoogle Scholar
Basaran, O. A. & Depaoli, D. W. 1994 Nonlinear oscillations of pendant drops. Phys. Fluids 6 (9), 29232943.CrossRefGoogle Scholar
Battal, T., Bain, C. D., Weiß, M. & Darton, R. C. 2003 Surfactant adsorption and Marangoni flow in liquid jets I. Experiments. J. Colloid Interface Sci. 263, 250260.CrossRefGoogle ScholarPubMed
Bellizia, G., Megaridis, C. M., McNallan, M. & Wallace, D. B. 2002 A capillary-jet instability method for measuring dynamic surface tension of liquid metals. Proc. R. Soc. Lond. A 459, 21952214.CrossRefGoogle Scholar
Berger, S. A. 1988 Initial-value stability analysis of a liquid jet. SIAM J. Appl. Maths 48, 973991.CrossRefGoogle Scholar
Bogy, D. B. 1978 Use of one-dimensional Cosserat theory to study instability in a viscous liquid jet. Phys. Fluids 21 (2), 190197.CrossRefGoogle Scholar
Bousfield, D. W. & Denn, M. M. 1987 Jet breakup enhanced by an initial pulse. Chem. Engng Commun. 53, 6168.CrossRefGoogle Scholar
Chakraborty, S. 2005 Analytical investigations on breakup of viscous liquid droplets on surface tension modulation during welding metal transfer. Appl. Phys. Lett. 86, 174104.CrossRefGoogle Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Clarendon.Google Scholar
Chaudhary, K. C. & Redekopp, L. G. 1980 The nonlinear capillary instability of a liquid jet. Part 1. Theory. J. Fluid Mech. 96, 257274.CrossRefGoogle Scholar
Chen, A. U., Notz, P. K. & Basaran, O. A. 2002 Computational and experimental analysis of pinch-off and scaling. Phys. Rev. Lett. 17 (88), 174501.CrossRefGoogle Scholar
Chuech, S. G. & Yan, M.-M. 2006 Application of the TVD scheme to the nonlinear instability analysis of a capillary jet. Intl J. Numer. Meth. Fluids 52, 11591174.CrossRefGoogle Scholar
Collantes, G. O., Yariv, E. & Frankel, I. 2003 Effects of solute mass transfer on the stability of capillary jets. J. Fluid Mech. 474, 95115.CrossRefGoogle Scholar
Collicott, S. H., Zhang, S. & Schneider, S. P. 1994 Quantitative liquid jet instability measurement system using asymmetric magnification and digital image processing. Exps. Fluids 16, 345348.CrossRefGoogle Scholar
Donnelly, R. J. & Glaberson, W. 1966 Experiments on the capillary instability of a liquid jet. Proc. R. Soc. Lond. 290, 547556.Google Scholar
Dressler, J. L. 1998 High-order azimuthal instabilities on a cylindrical liquid jet driven by temporal and spatial perturbations. Phys. Fluids 10 (9), 22122227.CrossRefGoogle Scholar
Eggers, J. 1997 Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69, 865929.CrossRefGoogle Scholar
Eggers, J. & Dupont, T. F. 1994 Drop formation in a one-dimensional approximation of the Navier–Stokes equation. J. Fluid Mech. 262, 205221.CrossRefGoogle Scholar
Furlani, E. P. 2005 Temporal instability of viscous liquid microjets with spatially varying surface tension. J. Phys. A: Math. Gen. 38, 263276.CrossRefGoogle Scholar
García, F. J. 1998 Aplicación de modelos unidimensionales a la dinámica de columnas líquidas con y sin campo eléctrico. PhD thesis, Universidad de Sevilla, Seville, Spain.Google Scholar
García, F. J. & Castellanos, A. 1994 One-dimensional models for slender axisymmetric viscous liquid jets. Phys. Fluids 6 (8), 26762689.CrossRefGoogle Scholar
García, F. J. & Castellanos, A. 1999 3-D and 1-D dynamics of slender liquid jets: linear analysis with electric field and accuracy of 1-D models near the breakup. In 1999 Conference on Electrical Insulation and Dielectric Phenomena, pp. 346–349.Google Scholar
García, F. J., Castellanos, A., Atten, P. & Barbet, B. 2000 Nonlinear one-dimensional modelling of the deformation and break-up of a conducting liquid jet under intermittent EHD stimulation. In Second Intl Workshop on EHD and Breakdown, pp. 158–161. Grenoble, France.Google Scholar
Goedde, E. F. & Yuen, M. C. 1970 Experiments on liquid jet instability. J. Fluid Mech. 40, 495511.CrossRefGoogle Scholar
González, H. & García, F. J. 2008 The measurement of growth rates in capillary jets. J. Fluid Mech. Submitted.CrossRefGoogle Scholar
Green, A. E. 1976 On the nonlinear behavior of fluid jets. Intl J. Engng Sci. 14, 4963.CrossRefGoogle Scholar
Gresho, P. M., Lee, R. L. & Sani, R. L. 1980 On the time-dependent solution of the incompressible Navier–Stokes equations in two and three dimensions. In Recent Advances in Numerical Methods in Fluids (ed. Taylor, C. & Morgan, K.), vol. 1, chap. 2, pp. 2779. Pineridge, Swansea, UK.Google Scholar
Grossmann, S. & Müller, A. 1984 Instabilities and decay rates of charged viscous liquid jets. Z. Phys. B 57, 161173.CrossRefGoogle Scholar
Hansson, B. A. M. & Hertz, H. M. 2004 Liquid-jet laser-plasma extreme ultraviolet sources: from droplets to filaments. J. Phys. D: Appl. Phys. 37, 32333243.CrossRefGoogle Scholar
Jatzkowski, T. & Modigell, M. 2005 Experiments on axisymmetric oscillating water jets: absorption of ammonia in presence of n-pentanol. Colloids Surfaces A: Physicochem. Engng Aspects 255, 4153.CrossRefGoogle Scholar
Kalaaji, A., Lopez, B., Attané, P. & Soucemarianadin, A. 2003 Breakup length of forced liquid jets. Phys. Fluids 15 (9), 24692479.CrossRefGoogle Scholar
Keller, J. B., Rubinow, S. I. & Tu, Y. O. 1973 Spatial instability of a jet. Phys. Fluids 16 (12), 20522055.CrossRefGoogle Scholar
Le, H. P. 1998 Progress and trends in ink-jet printing technology. J. Imaging Sci. Technol. 42, 4962.CrossRefGoogle Scholar
Lee, H. C. 1974 Drop formation in a liquid jet. IBM J. Res. Develop. 18, 364369.CrossRefGoogle Scholar
Levich, V. G. 1962 Physicochemical Hydrodynamics. Prentice–Hall.Google Scholar
Lin, S. P. 2003 Breakup of Liquid Sheets and Jets. Cambridge University Press.CrossRefGoogle Scholar
Mansour, N. N. & Lundgren, T. S. 1990 Satellite formation in capillary jet breakup. Phys. Fluids A 2 (7), 11411144.CrossRefGoogle Scholar
Nicolás, J. A. & Vega, J. M. 2000 Linear oscillations of axisymmetric viscous liquid bridges. Z. Angew. Math. Phys. 51, 701731.CrossRefGoogle Scholar
Pan, Y. & Suga, K. 2006 A numerical study on the breakup process of laminar liquid jets into a gas. Phys. Fluids 18 (5), 052101.CrossRefGoogle Scholar
Plateau, J. 1873 Statique Expérimentale et Théorique des Liquides Soumis aux Seules Forces Moléculaires. Gauthier Villars, Paris.Google Scholar
Ramos, A., García, F. J. & Valverde, J. M. 1999 On the breakup of slender liquid bridges: experiments and a 1-D numerical analysis. Eur. J. Mech. B/Fluids 18, 649658.CrossRefGoogle Scholar
Rayleigh, Lord 1878 On the instability of jets. Proc. Lond. Math. Soc. 10, 413.CrossRefGoogle Scholar
Rayleigh, Lord 1892 On the instability of a cylinder of viscous liquid under capillary forces. Philos. Mag. 34, 145154.CrossRefGoogle Scholar
Rayleigh, Lord 1945 The Theory of Sound, 2nd edn. Dover.Google Scholar
Ronay, M. 1978 a Determination of the dynamic surface tension of inks from the capillary instability of jets. J. Colloid Interface Sci. 66, 5567.CrossRefGoogle Scholar
Ronay, M. 1978 b Determination of the dynamic surface tension of liquids from the instability of excited capillary jets and from the oscillation frequency of drops issued from such jets. Proc. R. Soc. Lond. A 361, 181206.Google Scholar
Rutland, D. F. & Jameson, G. J. 1970 Theoretical predictions of the sizes of drops in the breakup of capillary jets. Chem. Engng Sci. 25, 16891698.CrossRefGoogle Scholar
Saroka, M., Guo, Y. & Ashgriz, N. 2001 Nonlinear instability of an evaporating capillary jet. AIAA J. 39, 17281734.CrossRefGoogle Scholar
Sellens, R. W. 1992 A onedimensional numerical model of capillary instability. Atom. Sprays 2, 239251.CrossRefGoogle Scholar
Shapiro, H. M. 2003 Practical Flow Cytometry, 4th edn. Wiley–Liss, Hoboken.CrossRefGoogle Scholar
Strang, G. & Fix, G. J. 1973 An Analysis of the Finite Element Method. Prentice–Hall.Google Scholar
Suryo, R., Doshi, P. & Basaran, O. A. 2006 Nonlinear dynamics and breakup of compound jets. Phys. Fluids 18 (8), 082107.CrossRefGoogle Scholar
Sweet, R. G. 1965 High frequency recording with electrostatically deflected ink jets. Rev. Sci. Instrum. 36, 131136.CrossRefGoogle Scholar
Taub, H. 1976 Investigation of nonlinear waves on liquid jets. Phys. Fluids 19 (8), 11241129.CrossRefGoogle Scholar
Torpey, P. A. 1989 A nonlinear theory for describing the propagation of disturbances on a capillary jet. Phys. Fluids A 1 (4), 661671.CrossRefGoogle Scholar
Weber, C. 1931 Zum Zerfall eines Flüssigkeitsstrahles. Z. Angew. Math. Mech. 11, 136154.CrossRefGoogle Scholar
Weiss, M., Darton, R. C., Battal, T. & Bain, C. D. 2004 Surfactant adsorption and Marangoni flow in liquid jets. 2. Modeling. Indust. Engng Chem. Res. 43, 52035220.CrossRefGoogle Scholar
Wetsel, G. C. 1980 Capillary oscillations on liquid jets. J. Appl. Phys. 51, 35863592.CrossRefGoogle Scholar
Wilkes, E. D., Phillips, S. D. & Basaran, O. A. 1999 Computational and experimental analysis of dynamics of drop formation. Phys. Fluids 11 (12), 35773598.CrossRefGoogle Scholar
Xing, J. H., Boguslawski, A., Soucemarianadin, A., Atten, P. & Attané, P. 1996 Experimental investigation of capillary instability: results on jet stimulated by pressure modulations. Exps. Fluids 20, 302313.CrossRefGoogle Scholar
Yuen, M. 1968 Nonlinear stability of a liquid jet. J. Fluid Mech. 33, 151163.CrossRefGoogle Scholar
Zhang, X., Padgett, R. S. & Basaran, O. A. 1996 Nonlinear deformation and breakup of stretching liquid bridges. J. Fluid Mech. 329, 207245.CrossRefGoogle Scholar