Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-19T15:57:43.521Z Has data issue: false hasContentIssue false

Normal and oblique drop impact of yield stress fluids with thixotropic effects

Published online by Cambridge University Press:  06 August 2019

Cassio M. Oishi
Affiliation:
Departamento de Matemática e Computação, Faculdade de Ciências e Tecnologia, Universidade Estadual Paulista ‘Júlio de Mesquita Filho’, 19060-900 Presidente Prudente, SP, Brazil
Roney L. Thompson*
Affiliation:
Department of Mechanical Engineering, COPPE, Universidade Federal do Rio de Janeiro, Centro de Técnologia, Ilha do Fundão, Rio de Janeiro, RJ 24210-240, Brazil
Fernando P. Martins
Affiliation:
Departamento de Matemática e Computação, Faculdade de Ciências e Tecnologia, Universidade Estadual Paulista ‘Júlio de Mesquita Filho’, 19060-900 Presidente Prudente, SP, Brazil
*
Email address for correspondence: [email protected]

Abstract

Normal and oblique drop impact on a solid surface is numerically analysed for yield stress fluids. A rich diversity of results are generated as a consequence of the exploration of the inertial, elastic, plastic and thixotropic features of the process, as well as the inclination of the solid surface. We show that drops of more thixotropic fluids have a higher tendency to bounce in the normal impact, and to roll or to bounce in the case of an oblique drop impact. Concerning elasticity, we found a critical value for the elastic Ohnesorge number above which no bouncing takes place. Experimental findings such as the fact that the stored energy due to the elasticity of the fluid drop plays a role similar to the stored energy of an interfacial nature in inelastic fluid drops are corroborated in the present study.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

An, S. M. & Lee, S. Y. 2012a Maximum spreading of a shear-thinning liquid drop impacting on dry solid surfaces. Exp. Therm. Fluid Sci. 38, 140148.Google Scholar
An, S. M. & Lee, S. Y. 2012b Observation of the spreading and receding behavior of a shear-thinning liquid drop impacting on dry solid surfaces. Exp. Therm. Fluid Sci. 37, 3745.Google Scholar
Antonini, C., Jung, S., Wetzel, A., Heer, E., Schoch, P., Moqaddam, A.M., Chikatamarla, S.S., Karlin, I., Marengo, M. & Poulikakos, D. 2016 Contactless prompt tumbling rebound of drops from a sublimating slope. Phys. Rev. Fluids 1, 013903.Google Scholar
Antonini, C., Villa, F. & Marengo, M. 2014 Oblique impacts of water drops onto hydrophobic and superhydrophobic surfaces: outcomes, timing, and rebound maps. Exp. Fluids 55 (1713), 19.Google Scholar
Balmforth, N. J., Frigaard, I. & Ovarlez, G. 2014 Yielding to stress: recent developments in viscoplastic fluid mechanics. Annu. Rev. Fluid Mech. 46, 121146.Google Scholar
Barnes, H. A. 1997 Thixotropy – a review. J. Non-Newtonian Fluid Mech. 70, 133.Google Scholar
Bartolo, D., Boudaoud, A., Narcy, G. & Bonn, D. 2007 Dynamics of non-Newtonian droplets. Phys. Rev. Lett. 99, 175502.Google Scholar
Bergeron, V. 2003 Designing intelligent fluids for controlling spray applications. C. R. Phys. 4, 211219.Google Scholar
Bergeron, V., Bonn, D., Martin, J. Y. & Vovelle, L. 2000 Controlling droplet deposition with polymer additives. Nature 405, 772775.Google Scholar
Bertola, V. 2012 The impact of viscoplastic drops on a heated surface in the Leidenfrost regime. Soft Matt. 12, 76247631.Google Scholar
Bertola, V. & Marengo, M. 2012 Drops and bubbles in contact with solid surfaces. In Single Drop Impacts of Complex Fluids: A Review, Koninklijke Brill NV.Google Scholar
Bird, J. C., Dhiman, R. & Varanasi, K. K. 2013 Reducing the contact time of a bouncing drop. Nature 503, 385397.Google Scholar
Blackwell, B. C., Deetjen, M. E., Gaudio, J. E. & Ewoldt, R. H. 2015 Sticking and splashing in yield-stress fluid drop impacts on coated surfaces. Phys. Fluids 27, 043101.Google Scholar
Bonn, D., Denn, M. M., Berthier, L., Divoux, T. & Manneville, S. 2017 Yield stress materials in soft condensed matter. Rev. Mod. Phys. 89, 035005.Google Scholar
de Bruyn, J. R., Moyers Gonzalez, M. & Frigaard, I. A. 2016 Viscoplastic fluids from theory to application: 10 years on. J. Non-Newtonian Fluid Mech. 238, 15.Google Scholar
Cheng, S. & Bertola, V. 2017 Morphology of viscoplastic drop impact on viscoplastic surfaces. Soft Matt. 13, 711719.Google Scholar
Coussot, P. 2014 Yield stress fluid flows: a review of experimental data. J. Non-Newtonian Fluid Mech. 211, 3149.Google Scholar
Coussot, P. & Gaulard, F. 2005 Gravity flow instability of viscoplastic materials: the ketchup drip. Phys. Rev. E 72, 031409.Google Scholar
Fang, J., Owens, R. G., Tacher, L. & Parriaux, A. 2006 A numerical study of the SPH method for simulating transient viscoelastic free surface flows. J. Non-Newtonian Fluid Mech. 139, 6884.Google Scholar
German, G. & Bertola, V. 2009 Impact of shear-thinning and yield-stress drops on solid substrates. J. Phys.: Condens. Matter 21, 375111.Google Scholar
Izbassarov, D. & Muradoglu, M. 2016 Effects of viscoelasticity on drop impact and spreading on a solid surface. Phys. Rev. Fluids 1, 023302.Google Scholar
Jalaal, M., Balmforth, N. J. & Stoeber, B. 2015 Slip of spreading viscoplastic droplets. Langmuir 31, 2017120175.Google Scholar
Jalaal, M., Kemper, D. & Lohse, D. 2019 Viscoplastic water entry. J. Fluid Mech. 864, 596613.Google Scholar
Jian, Z., Josserand, C., Popinet, S., Ray, P. & Zaleski, S. 2018 Two mechanisms of droplet splashing on a solid substrate. J. Fluid Mech. 835, 10651086.Google Scholar
Josserand, C. & Thoroddsen, S. T. 2016 Drop impact on a solid surface. Annu. Rev. Fluid Mech. 48, 365391.Google Scholar
Khojasteha, D., Kazeroonib, M., Salariana, S. & Kamalia, R. 2016 Droplet impact on superhydrophobic surfaces: a review of recent developments. J. Ind. Engng Chem. 42, 114.Google Scholar
Kim, E. & Baek, J. 2012 Numerical study of the parameters governing the impact dynamics of yield-stress fluid droplets on a solid surface. J. Non-Newtonian Fluid Mech. 173–174, 6271.Google Scholar
Luu, L. H. & Forterre, Y. 2009 Drop impact of yield-stress fluids. J. Fluid Mech. 632, 301327.Google Scholar
Nigen, S. 2005 Experimental investigation of the impact of an (apparent) yield-stress material. Atom. Spray 15, 103117.Google Scholar
Noroozi, S., Tavangar, S. & Hashemabadi, S. H. 2013 CFD simulation of wall impingement of tear shape viscoplastic drops utilizing OpenFOAM. Appl. Rheol. 23, 55519.Google Scholar
Oishi, C. M., Martins, F. P. & Thompson, R. L. 2017 The ‘avalanche effect’ of an elasto-viscoplastic thixotropic material on an inclined plane. J. Non-Newtonian Fluid Mech. 247, 165201.Google Scholar
Oishi, C. M., Martins, F. P., Tome, M. F. & Alves, M. A. 2012 Numerical simulation of drop impact and jet buckling problems using the eXtended Pom–Pom model. J. Non-Newtonian Fluid Mech. 169–170, 91103.Google Scholar
Oishi, C. M., Thompson, R. L. & Martins, F. P. 2016 Transient motions of elasto-viscoplastic thixotropic materials subjected to an imposed stress field and to stress-based free-surface boundary conditions. Intl J. Engng Sci. 109, 165201.Google Scholar
Philippi, J., Lagrée, P.-Y. & Antkowiak, A. 2016 Drop impact on a solid surface: short-time self similarity. J. Fluid Mech. 795, 96135.Google Scholar
Rozhkov, A., Prunet-Foch, B. & Vignes-Adler, M. 2003 Impact of drops of polymer solutions on small targets. Phys. Fluids 15, 20062019.Google Scholar
Saidi, A., Martin, C. & Magnin, A. 2010 Influence of yield stress on the fluid droplet impact control. J. Non-Newtonian Fluid Mech. 165, 596606.Google Scholar
Saramito, P. 2007 A new constitutive equation for elastoviscoplastic fluid flows. J. Non-Newtonian Fluid Mech. 145, 114.Google Scholar
Saramito, P. 2009 A new elastoviscoplastic model based on the Herschel–Bulkley viscoplastic model. J. Non-Newtonian Fluid Mech. 158, 154161.Google Scholar
Smith, M. & Bertola, V. 2010 Effect of polymer additives on the wetting of impacting droplets. Phys. Rev. Lett. 104, 154502.Google Scholar
de Souza Mendes, P. R. & Thompson, R. L. 2012 A critical overview of elasto-viscoplastic thixotropic modeling. J. Non-Newtonian Fluid Mech. 187–188, 815.Google Scholar
Thompson, R. L. & Soares, E. J. 2016 Viscoplastic dimensionless numbers. J. Non-Newtonian Fluid Mech. 238, 5764.Google Scholar
Uppal, A. S., Craster, R. V. & Matar, O. K. 2017 Dynamics of spreading thixotropic droplets. J. Non-Newtonian Fluid Mech. 240, 114.Google Scholar
Wang, Y., Do-Quang, M. & Amberg, G. 2017 Impact of viscoelastic droplets. J. Non-Newtonian Fluid Mech. 243, 3846.Google Scholar
Wirth, W., Storp, S. & Jacobsen, W. 1991 Mechanisms controlling leaf retention of agricultural spray solutions. Pesticide Science 33, 411421.Google Scholar
Yarin, A. L. 2006 Drop impact dynamics: Splashing, spreading, receding, bouncing. Annu. Rev. Fluid Mech. 38, 159192.Google Scholar
Yeong, Y. H., Burton, J. & Loth, E. 2014 Drop impact and rebound dynamics on an inclined superhydrophobic surface. Langmuir 30, 1202712038.Google Scholar

Oishi et al. supplementary movie 1

Numerical prediction of the structure parameter $\lambda$ at different dimensionless times using $Re=2.05$, $\tau_y=0.7$. From (column) left to right: $t_{eq}=5, 20$, and from (row) top to bottom: $Wi=0.05, 2$. The reader will find, in the supplementary material, the file Movie1.mp4 with the movie of the evolution displayed in this figure.

Download Oishi et al. supplementary movie 1(Video)
Video 1.4 MB

Oishi et al. supplementary movie 2

Numerical predictions of the structural parameter $\lambda$ at different dimensionless times using $Re=13.49$, $\tau_y=0.7$ and $Wi=0.5$ or $2.0$. Columns from left to right: $t_{eq}=5, 20$. The reader will find in the supplementary material the movie with the complete evolution of the motions shown in this figure.

Download Oishi et al. supplementary movie 2(Video)
Video 1.5 MB

Oishi et al. supplementary movie 3

Drop interface profiles for a surface at an inclination of $\theta=30 \degree$. The fixed non-dimensional parameter for the EVPT material is $Wi=0.05$; The thixotropic times shown are $t_{eq}=1, 5, 20$

Download Oishi et al. supplementary movie 3(Video)
Video 6.3 MB

Oishi et al. supplementary movie 4

Drop interface profiles for a surface at an inclination of $\theta=30 \degree$. The fixed non-dimensional parameter for the EVPT material is $Wi=2$; The times shown are $t_{eq}=1, 5, 20$. The drop interface profiles considering an Oldroyd-B fluid with $Wi=2$ for different $Re$ are also included

Download Oishi et al. supplementary movie 4(Video)
Video 10 MB

Oishi et al. supplementary movie 5

Numerical prediction of the structural parameter $\lambda$ at different dimensionless times using $Re=13.49$, $\tau_y=0.7$, $t_{eq}=5,$ and $Wi=0.5$ for a surface at an inclination of $\theta=30 \degree$. The reader will find, in the supplementary material, the file Movie5.mp4 with the movie of the complete evolution of the case shown in this figure.

Download Oishi et al. supplementary movie 5(Video)
Video 975 KB

Oishi et al. supplementary movie 6

Numerical prediction of the structural parameter $\lambda$ at different dimensionless times using $Re=13.49$, $\tau_y=0.3$, $t_{eq}=20,$ and $Wi=0.5$ for a surface at an inclination of $\theta=30 \degree$. The reader will find, in the supplementary material, the file Movie6.mp4 with the movie of the complete evolution of the case shown in this figure.

Download Oishi et al. supplementary movie 6(Video)
Video 1.4 MB

Oishi et al. supplementary movie 7

Set of evolutions with plastic number and dimensionless thixotropic time fixed. In the left column, $\tau_y=0.1$ and $t_{eq}=5$. In the right column, $\tau_y=0.7$ and $t_{eq}=20$. Normal impact, Re=2.05, Wi=0.05.

Download Oishi et al. supplementary movie 7(Video)
Video 2 MB

Oishi et al. supplementary movie 8

Set of evolutions with plastic number and dimensionless thixotropic time fixed. In the left column, $\tau_y=0.1$ and $t_{eq}=5$. In the right column, $\tau_y=0.7$ and $t_{eq}=20$. Normal impact, Re=2.05, Wi=2.00.

Download Oishi et al. supplementary movie 8(Video)
Video 1.4 MB

Oishi et al. supplementary movie 9

Set of evolutions with plastic number and dimensionless thixotropic time fixed. In the left column, $\tau_y=0.1$ and $t_{eq}=5$. In the right column, $\tau_y=0.7$ and $t_{eq}=20$. Normal impact, Re=13.49, Wi=0.05.

Download Oishi et al. supplementary movie 9(Video)
Video 950.1 KB

Oishi et al. supplementary movie 10

Set of evolutions with plastic number and dimensionless thixotropic time fixed. In the left column, $\tau_y=0.1$ and $t_{eq}=5$. In the right column, $\tau_y=0.7$ and $t_{eq}=20$.Normal impact, Re=13.49, Wi=2.00.

Download Oishi et al. supplementary movie 10(Video)
Video 1.7 MB

Oishi et al. supplementary movie 11

Set of evolutions with plastic number and dimensionless thixotropic time fixed. In the left column, $\tau_y=0.1$ and $t_{eq}=5$. In the right column, $\tau_y=0.7$ and $t_{eq}=20$. Inclined plane, $30^0$, Re=2.05, Wi=0.05.

Download Oishi et al. supplementary movie 11(Video)
Video 1.2 MB

Oishi et al. supplementary movie 12

Set of evolutions with plastic number and dimensionless thixotropic time fixed. In the left column, $\tau_y=0.1$ and $t_{eq}=5$. In the right column, $\tau_y=0.7$ and $t_{eq}=20$. Inclined plane, $30^0$, Re=2.05, Wi=2.00.

Download Oishi et al. supplementary movie 12(Video)
Video 1.4 MB

Oishi et al. supplementary movie 13

Set of evolutions with plastic number and dimensionless thixotropic time fixed. In the left column, $\tau_y=0.1$ and $t_{eq}=5$. In the right column, $\tau_y=0.7$ and $t_{eq}=20$. Inclined plane, $30^0$, Re=13.49, Wi=0.05.

Download Oishi et al. supplementary movie 13(Video)
Video 746.1 KB

Oishi et al. supplementary movie 14

Set of evolutions with plastic number and dimensionless thixotropic time fixed. In the left column, $ au_y=0.1$ and $t_{eq}=5$. In the right column, $ au_y=0.7$ and $t_{eq}=20$. Inclined plane, $30^0$, Re=13.49, Wi=2.00.

Download Oishi et al. supplementary movie 14(Video)
Video 1.3 MB

Oishi et al. supplementary movie 15

Set of evolutions with Weissenberg and dimensionless thixotropic time fixed. In the top left position, $Wi=0.05$ and $t_{eq}=5$. In the top right position, $Wi=0.05$ and $t_{eq}=20$. In the bottom left position, $Wi=2.00$ and $t_{eq}=5$. In the top right position, $Wi=2.00$ and $t_{eq}=20$. Normal impact, Re=2.05, $\tau_y$=0.1.

Download Oishi et al. supplementary movie 15(Video)
Video 1.7 MB

Oishi et al. supplementary movie 16

Set of evolutions with Weissenberg and dimensionless thixotropic time fixed. In the top left position, $Wi=0.05$ and $t_{eq}=5$. In the top right position, $Wi=0.05$ and $t_{eq}=20$. In the bottom left position, $Wi=2.00$ and $t_{eq}=5$. In the top right position, $Wi=2.00$ and $t_{eq}=20$. Normal impact, Re=2.05, \tau_y=0.7.

Download Oishi et al. supplementary movie 16(Video)
Video 1.4 MB

Oishi et al. supplementary movie 17

Set of evolutions with Weissenberg and dimensionless thixotropic time fixed. In the top left position, $Wi=0.05$ and $t_{eq}=5$. In the top right position, $Wi=0.05$ and $t_{eq}=20$. In the bottom left position, $Wi=2.00$ and $t_{eq}=5$. In the top right position, $Wi=2.00$ and $t_{eq}=20$. Normal impact, Re=13.49, \tau_y=0.1.

Download Oishi et al. supplementary movie 17(Video)
Video 1.4 MB

Oishi et al. supplementary movie 18

Set of evolutions with Weissenberg and dimensionless thixotropic time fixed. In the top left position, $Wi=0.05$ and $t_{eq}=5$. In the top right position, $Wi=0.05$ and $t_{eq}=20$. In the bottom left position, $Wi=2.00$ and $t_{eq}=5$. In the top right position, $Wi=2.00$ and $t_{eq}=20$. Normal impact, Re=13.49, \tau_y=0.7.

Download Oishi et al. supplementary movie 18(Video)
Video 1.3 MB

Oishi et al. supplementary movie 19

Set of evolutions with Weissenberg and dimensionless thixotropic time fixed. In the top left position, $Wi=0.05$ and $t_{eq}=5$. In the top right position, $Wi=0.05$ and $t_{eq}=20$. In the bottom left position, $Wi=2.00$ and $t_{eq}=5$. In the top right position, $Wi=2.00$ and $t_{eq}=20$. Inclined plane, $30^0$, Re=2.05, \tau_y=0.1.

Download Oishi et al. supplementary movie 19(Video)
Video 1.5 MB

Oishi et al. supplementary movie 20

Set of evolutions with Weissenberg and dimensionless thixotropic time fixed. In the top left position, $Wi=0.05$ and $t_{eq}=5$. In the top right position, $Wi=0.05$ and $t_{eq}=20$. In the bottom left position, $Wi=2.00$ and $t_{eq}=5$. In the top right position, $Wi=2.00$ and $t_{eq}=20$. Inclined plane, $30^0$, Re=2.05, \tau_y=0.7.

Download Oishi et al. supplementary movie 20(Video)
Video 1.8 MB

Oishi et al. supplementary movie 21

Set of evolutions with Weissenberg and dimensionless thixotropic time fixed. In the top left position, $Wi=0.05$ and $t_{eq}=5$. In the top right position, $Wi=0.05$ and $t_{eq}=20$. In the bottom left position, $Wi=2.00$ and $t_{eq}=5$. In the top right position, $Wi=2.00$ and $t_{eq}=20$. Inclined plane, $30^0$, Re=13.49, \tau_y=0.1.

Download Oishi et al. supplementary movie 21(Video)
Video 867.6 KB

Oishi et al. supplementary movie 22

Set of evolutions with Weissenberg and dimensionless thixotropic time fixed. In the top left position, $Wi=0.05$ and $t_{eq}=5$. In the top right position, $Wi=0.05$ and $t_{eq}=20$. In the bottom left position, $Wi=2.00$ and $t_{eq}=5$. In the top right position, $Wi=2.00$ and $t_{eq}=20$. Inclined plane, $30^0$, Re=13.49, \tau_y=0.7.

Download Oishi et al. supplementary movie 22(Video)
Video 1.1 MB