Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-22T09:29:27.701Z Has data issue: false hasContentIssue false

Nonlinear landslide tsunami run-up

Published online by Cambridge University Press:  13 December 2011

M. Sinan Özeren
Affiliation:
Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
Nazmi Postacioglu*
Affiliation:
Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
*
Email address for correspondence: [email protected]

Abstract

Inhomogeneous nonlinear shallow-water equations are studied using the Carrier–Greenspan approach and the resulting equations are solved analytically. The Carrier–Greenspan transformations are commonly used hodograph transformations that transform the nonlinear shallow-water equations into a set of linear equations in which partial derivatives with respect to two auxiliary variables appear. Yet, when the resulting initial-value problem is treated analytically through the use of Green’s functions, the partial derivatives of the Green’s functions have non-integrable singularities. This has forced researchers to numerically differentiate the convolutions of the Green’s functions. In this work we remedy this problem by differentiating the initial condition rather than the Green’s function itself; we also perform a change of variables that renders the entire problem more easily treatable. This particular Green’s function approach is especially useful to treat sources that are extended in time; we therefore apply it to model the run-down and run-up of the tsunami waves triggered by submarine landslides. Another advantage of the method presented is that the parametrization of the landslide using sources is done within the integral algorithm that is used for the rest of the problem instead of treating the landslide-generated wave as a separate incident wave. The method proves to be more accurate than the techniques based on Bessel function expansions if the sources are very localized.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Amparo, G., Segura, J. & Temme, N. 2007 Numerical Methods for Special Functions. Society for Industrial and Applied Mathematics , SIAM.Google Scholar
2. Assier-Rzadkiewicz, S., Heinrich, P., Sabatier, P. C., Savoye, B. & Bourillet, J. F. 2000 Numerical modelling of a landslide-generated tsunami: the 1979 nice event. Pageoph 157, 17071727.CrossRefGoogle Scholar
3. Aydin, B. & Kanoglu, U. 2007 Wind set-down relaxation. CMES – Comput. Modell. Engng Sci. 21, 149155.Google Scholar
4. Bardet, J. P., Synolakis, C. E., Davies, H. L., Imamura, F. & Okal, E. A. 2003 Landslide tsunamis: recent findings and research directions. Pure Appl. Geophys. 160, 17931809.CrossRefGoogle Scholar
5. Carrier, G. F. & Greenspan, H. P. 1958 Water waves of finite amplitude on a sloping beach. J. Fluid Mech. 4, 97109.CrossRefGoogle Scholar
6. Carrier, G. F., Wu, T. T. & Yeh, H. 2003 Run-up and draw-down on a plane beach. J. Fluid Mech. 475, 7999.CrossRefGoogle Scholar
7. DiRisio, M., Bellotti, G., Panizzo, A. & DeGirolamo, P. 2009 Three-dimensional experiments on landslide generated waves at a sloping coast. Coast. Engng 56, 659671.CrossRefGoogle Scholar
8. Geist, E. L. 2000 Origin of the 17 July 1998 Papua New Guinea tsunami: earthquake or landslide? Seismological Res. Lett. 71, 344351.CrossRefGoogle Scholar
9. Geist, E. L., Lynett, P. J. & Chaytor, J. D. 2009 Hydrodynamic modelling of tsunamis from the Currituck landslide. Mar. Geol. 264, 4152.CrossRefGoogle Scholar
10. Kanoglu, U. 2004 Nonlinear evolution runup-rundown of long waves over sloping beach. J. Fluid Mech. 513, 363372.CrossRefGoogle Scholar
11. Kanoglu, U. & Synolakis, C. 2006 Initial value problem solution of nonlinear shallow water-wave equations. Phys. Rev. Lett. 97, 148501.CrossRefGoogle ScholarPubMed
12. Liu, P. L.-F., Lynett, P. & Synolakis, C. E. 2003 Analytical solutions for forced long waves on a sloping beach. J. Fluid Mech. 478, 101109.CrossRefGoogle Scholar
13. Liu, P. L.-F., Wu, T. R., Raichlen, R., Synolakis, C. E. & Borrero, J. C. 2005 Runup and rundown generated by three-dimensional sliding masses. J. Fluid Mech. 536, 107144.CrossRefGoogle Scholar
14. Madsen, P. A. & Schäffer, H. A. 2010 Analytical solutions for tsunami runup on a plane beach: single waves, n-waves and transient waves. J. Fluid Mech. 645, 2757.CrossRefGoogle Scholar
15. Miloh, T., Tyvand, P. A. & Zilman, G. 2002 Green function for initial free-surface flows due to three-dimensional impulsive bottom deflection. J. Engng Maths 43, 5774.CrossRefGoogle Scholar
16. Özeren, M. S., Cagatay, M. N., Postacioglu, N., Şengör, A. M. C., Gorur, N. & Eris, K. 2010 Mathematical modelling of a potential tsunami associated with a late glacial submarine landslide in the sea of marmara. Geomarine Lett. 30 (5), 523539.Google Scholar
17. Postacioglu, N. & Özeren, M. S. 2008 A semi-spectral modelling of landslide tsunamis. Geophys. J. Intl 175, 116.CrossRefGoogle Scholar
18. Pritchard, D. & Dickinson, L. 2007 The near-shore behaviour of shallow-water waves with localized initial conditions. J. Fluid Mech. 591, 413436.CrossRefGoogle Scholar
19. Sammarco, P. & Renzi, E. 2008 Landslide tsunamis propagating along a plane beach. J. Fluid Mech. 598, 107119.CrossRefGoogle Scholar
20. Tinti, S. & Tonini, R. 2005 Analytical evolution of tsunamis induced by near shore earthquake on constant slope ocean. J. Fluid Mech. 535, 3364.CrossRefGoogle Scholar
21. Tyvand, P. A. & Storhaug, A. R. F. 2000 Green functions for impulsive free-surface flows due to bottom deflections in two-dimensional topographies. Phys. Fluids 12, 28192833.CrossRefGoogle Scholar
22. Wang, Y., Liu, P. L. F. & Mei, C. C. 2011 Solid landslide generated waves. J. Fluid Mech. 675, 529539.CrossRefGoogle Scholar
23. Ward, S. 2001 Landslide tsunami. J. Geophys. Res. 106, 1120111215.CrossRefGoogle Scholar
24. Watts, P. 2000 Tsunami features of solid block underwater landslides. J. Waterways Port Coast. Ocean Engng 126 (3), 144152.CrossRefGoogle Scholar
25. Watts, P., Grilli, S. T., Kirby, J. T., Fryer, G. J. & Tappin, D. R. 2003 Landslide tsunami case studies using a boussinesq model and a fully nonlinear tsunami generation model. Nat. Hazards Earth Syst. Sci. 3, 391402.CrossRefGoogle Scholar
26. Witham, G. B. 1974 Linear and Nonlinear Waves. Wiley-Interscience.Google Scholar