Article contents
Nonlinear hydroelastic waves on a linear shear current at finite depth
Published online by Cambridge University Press: 31 July 2019
Abstract
This work is concerned with waves propagating on water of finite depth with a constant-vorticity current under a deformable flexible sheet. The pressure exerted by the sheet is modelled by using the Cosserat thin shell theory. By means of multi-scale analysis, small amplitude nonlinear modulation equations in several regimes are considered, including the nonlinear Schrödinger equation (NLS) which is used to predict the existence of small-amplitude wavepacket solitary waves in the full Euler equations and to study the modulational instability of quasi-monochromatic wavetrains. Guided by these weakly nonlinear results, fully nonlinear steady and time-dependent computations are performed by employing a conformal mapping technique. Bifurcation mechanisms and typical profiles of solitary waves for different underlying shear currents are presented in detail. It is shown that even when small-amplitude solitary waves are not predicted by the weakly nonlinear theory, we can numerically find large-amplitude solitary waves in the fully nonlinear equations. Time-dependent simulations are carried out to confirm the modulational stability results and illustrate possible outcomes of the nonlinear evolution in unstable cases.
- Type
- JFM Papers
- Information
- Copyright
- © 2019 Cambridge University Press
References
- 11
- Cited by