Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-22T12:31:39.008Z Has data issue: false hasContentIssue false

The nonlinear excitation of synchronous edge waves by a monochromatic wave normally approaching a plane beach

Published online by Cambridge University Press:  26 April 2006

P. Blondeaux
Affiliation:
Dipartimento di Ingegneria delle Strutture, delle Acque e del Terreno, Università dell'Aquila, 67040 Monteluco di Roio, L'Aquila, Italy
G. Vittori
Affiliation:
Istituto di Idraulica, Universitá di Genova, Via Montallegro 1, 16145 Genova, Italy

Abstract

The possible excitation of synchronous edge waves by a monocromatic wave normally approaching a plane beach is studied. Use is made of the full three-dimensional water wave theory but only beach angles β = π/(2N), where N is an integer, are considered. A weakly nonlinear stability analysis is used to investigate the interaction of subharmonic, synchronous and 3/2-frequency edge waves with the incoming wave field. It is shown that values of β exist for which an energy transfer from the incoming wave to the synchronous edge waves takes place through the intermediary of the subharmonic components.

Type
Research Article
Copyright
© 1995 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Galvin, C. J. 1965 Resonant edge waves on laboratory beaches. Eos Trans. AGU 46, 122.Google Scholar
Guza, R. T. & Bowen, A. J. 1976 Finite amplitude edge waves. J. Mar. Res. 34, 269293.Google Scholar
Guza, R. T. & Davis, R. E. 1974 Excitation of edge waves by waves incident on a beach. J. Geophys. Res. 79, 12851291.Google Scholar
Guza, R. T. & Inman, D. L. 1975 Edge waves and beach cusps. J. Geophys. Res. 80, 29973011.Google Scholar
Miles, J. W. 1990. Parametrically excited standing edge waves. J. Fluid Mech. 214, 4357.Google Scholar
Miles, J. W. & Henderson, D. 1990 Parametrically forced surface waves. Ann. Rev. Fluid Mech. 22, 143146.Google Scholar
Minzoni, A. A. 1976 Nonlinear edge waves and shallow-water theory. J. Fluid Mech. 74, 369374.Google Scholar
Minzoni, A. A. & Whitham, G. B. 1977 On the excitation of edge waves on beaches. J. Fluid Mech. 79, 273287.Google Scholar
Rockliff, N. 1978 Finite amplitude effect in free and forced edge waves. Math. Proc. Camb. Phil. Soc. 83, 463479.Google Scholar
Simmons, W. F. 1969 A variational method for weak resonant wave interactions. Proc. R. Soc. Lond. A 309, 551579.Google Scholar
Stoker, J. J. 1957 Water Waves. Interscience.
Stokes, G. G. 1846 Report on recent researchers in hydrodynamics. Brit. Assoc. Rep. Part 1, 1.
Ursell, F. 1952 Edge waves on a sloping beach. Proc. R. Soc. Lond. A 214, 7997.Google Scholar
Werner, B. T. & Fink, T. M. 1993 Beach cusps as self-organized patterns. Science 260, 968971.Google Scholar
Whitham, G. B. 1976 Nonlinear effects in edge waves. J. Fluid Mech. 74, 353368.Google Scholar