Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-19T12:00:34.283Z Has data issue: false hasContentIssue false

Nonlinear evolution of the elliptical instability: an example of inertial wave breakdown

Published online by Cambridge University Press:  10 October 1999

D. M. MASON
Affiliation:
Department of Mathematics, University of Bristol, Bristol, BS8 1TW, UK
R. R. KERSWELL
Affiliation:
Department of Mathematics, University of Bristol, Bristol, BS8 1TW, UK

Abstract

A direct numerical simulation is presented of an elliptical instability observed in the laboratory within an elliptically distorted, rapidly rotating, fluid-filled cylinder (Malkus 1989). Generically, the instability manifests itself as the pairwise resonance of two different inertial modes with the underlying elliptical flow. We study in detail the simplest ‘subharmonic’ form of the instability where the waves are a complex conjugate pair and which at weakly supercritical elliptical distortion should ultimately saturate at some finite amplitude (Waleffe 1989; Kerswell 1992). Such states have yet to be experimentally identified since the flow invariably breaks down to small-scale disorder. Evidence is presented here to support the argument that such weakly nonlinear states are never seen because they are either unstable to secondary instabilities at observable amplitudes or neighbouring competitor elliptical instabilities grow to ultimately disrupt them. The former scenario confirms earlier work (Kerswell 1999) which highlights the generic instability of inertial waves even at very small amplitudes. The latter represents a first numerical demonstration of two competing elliptical instabilities co-existing in a bounded system.

Type
Research Article
Copyright
© 1999 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)