Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-12-03T20:21:12.088Z Has data issue: false hasContentIssue false

Nonlinear evolution of the centrifugal instability using a semilinear model

Published online by Cambridge University Press:  19 June 2020

Eunok Yim*
Affiliation:
LFMI, École Polytechnique Fédérale de Lausanne, 1015Lausanne, Switzerland
P. Billant
Affiliation:
LadHyX, CNRS, École Polytechnique, F-91128Palaiseau CEDEX, France
F. Gallaire
Affiliation:
LFMI, École Polytechnique Fédérale de Lausanne, 1015Lausanne, Switzerland
*
Email address for correspondence: [email protected]

Abstract

We study the nonlinear evolution of the axisymmetric centrifugal instability developing on a columnar anticyclone with a Gaussian angular velocity using a semilinear approach. The model consists of two coupled equations: one for the linear evolution of the most unstable perturbation on the axially averaged mean flow and another for the evolution of the mean flow under the effect of the axially averaged Reynolds stresses due to the perturbation. Such a model is similar to the self-consistent model of Mantič-Lugo et al. (Phys. Rev. Lett, vol. 113, 2014, 084501) except that the time averaging is replaced by a spatial averaging. The nonlinear evolutions of the mean flow and the perturbations predicted by this semilinear model are in very good agreement with direct numerical simulations for the Rossby number $Ro=-4$ and both values of the Reynolds numbers investigated: $Re=800$ and $2000$ (based on the initial maximum angular velocity and radius of the vortex). An improved model, taking into account the second-harmonic perturbations, is also considered. The results show that the angular momentum of the mean flow is homogenized towards a centrifugally stable profile via the action of the Reynolds stresses of the fluctuations. The final velocity profile predicted by Kloosterziel et al. (J. Fluid Mech., vol. 583, 2007, pp. 379–412) in the inviscid limit is extended to finite high Reynolds numbers. It is in good agreement with the numerical simulations.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. & Gill, A. E. 1962 Analysis of the stability of axisymmetric jets. J. Fluid Mech. 14 (4), 529551.CrossRefGoogle Scholar
Billant, P. & Gallaire, F. 2005 Generalized Rayleigh criterion for non-axisymmetric centrifugal instabilities. J. Fluid Mech. 542, 365379.CrossRefGoogle Scholar
Carnevale, G. F., Kloosterziel, R. C., Orlandi, P. & Van Sommeren, D. D. J. A. 2011 Predicting the aftermath of vortex breakup in rotating flow. J. Fluid Mech. 669, 90119.CrossRefGoogle Scholar
Carton, X., Flierl, G. R. & Polvani, L. M. 1989 The generation of tripoles from unstable axisymmetric isolated vortex structures. Europhys. Lett. 9 (4), 339344.CrossRefGoogle Scholar
Deloncle, A., Billant, P. & Chomaz, J.-M. 2008 Nonlinear evolution of the zigzag instability in stratified fluids: a shortcut on the route to dissipation. J. Fluid Mech. 599, 229239.CrossRefGoogle Scholar
Fischer, P. F., Lottes, J. W. & Kerkemeier, S. G.2008 Nek5000 Web page. Available at: http://nek5000.mcs.anl.gov.Google Scholar
Gent, P. R. & McWilliams, J. C. 1986 The instability of barotropic circular vortices. Geophys. Astrophys. Fluid Dyn. 35 (1–4), 209233.CrossRefGoogle Scholar
Hecht, F. 2012 New development in freefem++. J. Numer. Math. 20 (3–4), 251265.Google Scholar
Ioannou, A., Stegner, A., Le Vu, B., Taupier-Letage, I. & Speich, S. 2017 Dynamical evolution of intense Ierapetra eddies on a 22 year long period. J. Geophys. Res. 122 (11), 92769298.Google Scholar
Kloosterziel, R. C., Carnevale, G. F. & Orlandi, P. 2007 Inertial instability in rotating and stratified fluids: barotropic vortices. J. Fluid Mech. 583, 379412.CrossRefGoogle Scholar
Kloosterziel, R. C. & van Heijst, G. J. F. 1991 An experimental study of unstable barotropic vortices in a rotating fluid. J. Fluid Mech. 223, 124.CrossRefGoogle Scholar
Lahaye, N. & Zeitlin, V. 2015 Centrifugal, barotropic and baroclinic instabilities of isolated ageostrophic anticyclones in the two-layer rotating shallow water model and their nonlinear saturation. J. Fluid Mech. 762, 534.CrossRefGoogle Scholar
Lazar, A., Stegner, A. & Heifetz, E. 2013 Inertial instability of intense stratified anticyclones. Part 1. Generalized stability criterion. J. Fluid Mech. 732, 457484.CrossRefGoogle Scholar
Mantič-Lugo, V. C., Arratia, C. & Gallaire, F. 2014 Self-consistent mean flow description of the nonlinear saturation of the vortex shedding in the cylinder wake. Phys. Rev. Lett. 113, 084501.CrossRefGoogle ScholarPubMed
Mantič-Lugo, V. C., Arratia, C. & Gallaire, F. 2015 A self-consistent model for the saturation dynamics of the vortex shedding around the mean flow in the unstable cylinder wake. Phys. Fluids 27 (7), 074103.CrossRefGoogle Scholar
Meliga, P. 2017 Harmonics generation and the mechanics of saturation in flow over an open cavity: a second-order self-consistent description. J. Fluid Mech. 826, 503521.CrossRefGoogle Scholar
Rayleigh, Lord 1917 On the dynamics of revolving fluids. Proc. R. Soc. Lond. A 93 (648), 148154.Google Scholar
Reynolds, W. C. & Hussain, A. K. M. F. 1972 The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments. J. Fluid Mech. 54 (2), 263288.CrossRefGoogle Scholar
Smyth, W. D. & McWilliams, J. C. 1998 Instability of an axisymmetric vortex in a stably stratified, rotating environment. Theor. Comput. Fluid Dyn. 11 (3–4), 305322.CrossRefGoogle Scholar
Synge, J. L. 1933 The stability of heterogeneous liquids. Trans. R. Soc. Can. 27, 1.Google Scholar
Yim, E. & Billant, P. 2015 On the mechanism of the Gent–McWilliams instability of a columnar vortex in stratified rotating fluids. J. Fluid Mech. 780, 544.CrossRefGoogle Scholar
Yim, E., Billant, P. & Ménesguen, C. 2016 Stability of an isolated pancake vortex in continuously stratified-rotating fluids. J. Fluid Mech. 801, 508553.CrossRefGoogle Scholar
Yim, E., Stegner, A. & Billant, P. 2019 Stability criterion for the centrifugal instability of surface intensified anticyclones. J. Phys. Oceanogr. 49 (3), 827849.CrossRefGoogle Scholar