Published online by Cambridge University Press: 10 December 1997
Results are reported on direct numerical simulations of transition from two-dimensional to three-dimensional states due to secondary instability in the wake of a circular cylinder. These calculations quantify the nonlinear response of the system to three-dimensional perturbations near threshold for the two separate linear instabilities of the wake: mode A and mode B. The objectives are to classify the nonlinear form of the bifurcation to mode A and mode B and to identify the conditions under which the wake evolves to periodic, quasi-periodic, or chaotic states with respect to changes in spanwise dimension and Reynolds number. The onset of mode A is shown to occur through a subcritical bifurcation that causes a reduction in the primary oscillation frequency of the wake at saturation. In contrast, the onset of mode B occurs through a supercritical bifurcation with no frequency shift near threshold. Simulations of the three-dimensional wake for fixed Reynolds number and increasing spanwise dimension show that large systems evolve to a state of spatiotemporal chaos, and suggest that three-dimensionality in the wake leads to irregular states and fast transition to turbulence at Reynolds numbers just beyond the onset of the secondary instability. A key feature of these ‘turbulent’ states is the competition between self-excited, three-dimensional instability modes (global modes) in the mode A wavenumber band. These instability modes produce irregular spatiotemporal patterns and large-scale ‘spot-like’ disturbances in the wake during the breakdown of the regular mode A pattern. Simulations at higher Reynolds number show that long-wavelength interactions modulate fluctuating forces and cause variations in phase along the span of the cylinder that reduce the fluctuating amplitude of lift and drag. Results of both two-dimensional and three-dimensional simulations are presented for a range of Reynolds number from about 10 up to 1000.