Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-08T04:45:10.697Z Has data issue: false hasContentIssue false

Nonlinear dynamics and hydrodynamic feedback in two-dimensional double cavity flow

Published online by Cambridge University Press:  17 January 2017

F. Tuerke*
Affiliation:
Laboratorio de Fluidodinámica, Facultad de Ingeniería, Universidad de Buenos Aires, C1063ACV CABA, Argentina CONICET – Consejo Nacional de Investigaciones Científicas y Técnicas, C1425FQD CABA, Argentina Université Paris Sud 11, F-91400 Orsay CEDEX, France
L. Pastur
Affiliation:
Université Paris Sud 11, F-91400 Orsay CEDEX, France LIMSI-CNRS, BP 133, F-91403 Orsay CEDEX, France
Y. Fraigneau
Affiliation:
LIMSI-CNRS, BP 133, F-91403 Orsay CEDEX, France
D. Sciamarella
Affiliation:
LIMSI-CNRS, BP 133, F-91403 Orsay CEDEX, France
F. Lusseyran
Affiliation:
Université Paris Sud 11, F-91400 Orsay CEDEX, France LIMSI-CNRS, BP 133, F-91403 Orsay CEDEX, France
G. Artana
Affiliation:
Laboratorio de Fluidodinámica, Facultad de Ingeniería, Universidad de Buenos Aires, C1063ACV CABA, Argentina CONICET – Consejo Nacional de Investigaciones Científicas y Técnicas, C1425FQD CABA, Argentina
*
Email address for correspondence: [email protected]

Abstract

This paper reports results obtained with two-dimensional numerical simulations of viscous incompressible flow in a symmetric channel with a sudden expansion and contraction, creating two facing cavities; a so-called double cavity. Based on time series recorded at discrete probe points inside the double cavity, different flow regimes are identified when the Reynolds number and the intercavity distance are varied. The transition from steady to chaotic flow behaviour can in general be summarized as follows: steady (fixed) point, period-1 limit cycle, intermediate regime (including quasi-periodicity) and torus breakdown leading to toroidal chaos. The analysis of the intracavity vorticity reveals a ‘carousel’ pattern, creating a feedback mechanism, that influences the shear-layer oscillations and makes it possible to identify in which regime the flow resides. A relation was found between the ratio of the shear-layer frequency peaks and the number of small intracavity structures observed in the flow field of a given regime. The properties of each regime are determined by the interplay of three characteristic time scales: the turnover time of the large intracavity vortex, the lifetime of the small intracavity vortex structures and the period of the dominant shear-layer oscillations.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agarwal, M., Scherer, R. C. & Hollien, H. 2003 The false vocal folds: shape and size in frontal view during phonation based on laminagraphic tracings. J. Voice 7, 97113.CrossRefGoogle Scholar
Back, L. H. & Roschke, E. J. 1972 Shear-layer flow regimes and wave instabilities and reattachment lengths downstream of an abrupt circular expansion. Trans. ASME J. Appl. Mech. 39 (3), 677681.Google Scholar
Basley, J., Pastur, L., Lusseyran, F., Faure, T. & Delprat, N. 2011 Experimental investigation of global structures in an incompressible cavity flow using time-resolved piv. Exp. Fluids 50 (4), 905918.CrossRefGoogle Scholar
Basley, J., Pastur, L. R., Delprat, N. & Lusseyran, F. 2013 Space–time aspects of a three-dimensional multi-modulated open cavity flow. Phys. Fluids 25, 064105.Google Scholar
Cao, L. 1997 Practical method for determining the minimum embedding dimension of a scalar time series. Phys. D 110 (1–2), 4350.Google Scholar
Chisari, N. E., Artana, G. & Sciamarella, D. 2011 Vortex dipolar structures in a rigid model of the larynx at flow onset. Exp. Fluids 50, 397406.Google Scholar
Curry, J. H. & Yorke, J. A. 1978 A transition from Hopf bifurcation to chaos: computer experiments on maps on R 2 . In The Structure of Attractors in Dynamical Systems (ed. Markley, N. D., Martin, J. C. & Perrizo, W.), Lecture Notes in Mathematics, vol. 668, pp. 4868. Springer.CrossRefGoogle Scholar
Drikakis, D. 1997 Bifurcation phenomena in incompressible sudden expansion flows. Phys. Fluids 9 (1), 7687.CrossRefGoogle Scholar
Durst, F., Melling, A. & Whitelaw, J. H. 1974 Low Reynolds number flow over a plane symmetric sudden expansion. J. Fluid Mech. 64 (01), 111128.CrossRefGoogle Scholar
Fearn, R. M., Mullin, T. & Cliffe, K. A. 1990 Nonlinear flow phenomena in a symmetric sudden expansion. J. Fluid Mech. 211, 595608.Google Scholar
Gadoin, E., Quéré, P. L. & Daube, O. 2001 A general methodology for investigating flow instability in complex geometries: application to natural convection in enclosures. Intl J. Numer. Meth. Fluids 37, 175208.Google Scholar
Goda, K. 1979 A multistep technique with implicit difference schemes for calculating two or three-dimensional cavity flows. J. Comput. Phys. 30, 7695.CrossRefGoogle Scholar
Guermond, J. L., Minev, P. D. & Shen, J. 2006 An overview of projection methods for incompressible flows. Comput. Meth. Appl. Mech. Engng 195, 60116045.Google Scholar
Hirsch, C. 1987 Numerical Computation of Internal and External Flows, vol. 1. Wiley.Google Scholar
Johnson, T. A. & Patel, V. C. 1999 Flow past a sphere up to a Reynolds number of 300. J. Fluid Mech. 378, 1970.CrossRefGoogle Scholar
Kang, S. 2003 Characteristics of flow over two circular cylinders in a side-by-side arrangement at low Reynolds numbers. Phys. Fluids 15 (9), 24862498.Google Scholar
Knisely, C. & Rockwell, D. 1982 Self-sustained low-frequency components in an impinging shear layer. J. Fluid Mech. 116, 157186.CrossRefGoogle Scholar
Koch, A. 1985 Local instability characteristics and frequency determination of self-excited wake flows. J. Sound Vib. 99 (1), 5383.CrossRefGoogle Scholar
Kulikowskii, A. G. & Shikina, I. S. 1996 The transition to instability in weakly non-uniform flows without dissipation. Z. Angew. Math. Mech. 60 (3), 429432.Google Scholar
Landel, J. R., Caulfield, C. P. & Woods, A. W. 2012 Meandering due to large eddies and the statistically self-similar dynamics of quasi-two-dimensional jets. J. Fluid Mech. 692, 347368.CrossRefGoogle Scholar
Letellier, C., Messager, V. & Gilmore, R. 2008 From quasiperiodicity to toroidal chaos: analogy between the Curry-Yorke map and the van der Pol system. Phys. Rev. E 77, 046203.Google ScholarPubMed
Lopez-Rebollal, O. & Sanmartin, J. R. 1995 A generic, hard transition to chaos. Physica D 89 (1), 204221.CrossRefGoogle Scholar
Lusseyran, F., Pastur, L. & Letellier, C. 2008 Dynamical analysis of an intermittency in open cavity flow. Phys. Fluids 20, 114101.Google Scholar
Maurel, A., Ern, P., Zielinska, B. J. A. & Wesfreid, J. E. 1996 Experimental study of self-sustained oscillations in a confined jet. Phys. Rev. E 54, 36433651.Google Scholar
Mizushima, J. & Shiotani, Y. 2001 Transitions and instabilities of flow in a symmetric channel with a suddenly expanded and contracted part. J. Fluid Mech. 434, 355369.Google Scholar
Mullin, T., Shipton, S. & Tavener, S. J. 2003 Flow in a symmetric channel with an expanded section. Fluid Dyn. Res. 33, 433452.CrossRefGoogle Scholar
Pastur, L. R., Lusseyran, F., Faure, T. M., Fraigneau, Y., Pethieu, R. & Debesse, P. 2008 A reconstruction method for the flow past an open cavity. Exp. Fluids 44, 597608.CrossRefGoogle Scholar
Pierrehumbert, R. T. 1984 Local and global baroclinic instability of zonally varying flows. J. Atmos. Sci. 41, 21412162.2.0.CO;2>CrossRefGoogle Scholar
Podvin, B., Fraigneau, Y., Lusseyran, F. & Gougat, P. 2006 A reconstruction method for the flow past an open cavity. Trans. ASME J. Fluids Engng 128, 531540.Google Scholar
Righolt, B. W., Kenjereš, S., Kalter, R., Tummers, M. J. & Kleijn, C. R. 2015 Dynamics of an oscillating turbulent jet in a confined cavity. Phys. Fluids 27 (9), 095107.Google Scholar
Rizi, M.-Y., Pastur, L., Abbas-Turki, M., Fraigneau, Y. & Abou-Kandil, H. 2015 Closed-loop analysis and control of cavity shear layer oscillations. Intl J. Flow Control 6, 171187.Google Scholar
Rockwell, D. & Naudascher, Et. 1978 Review – self-sustaining oscillations of flow past cavities. J. Fluids Engng 100 (2), 152165.Google Scholar
Rossiter, J. E. 1964 Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds. Aero. Res. Counc. R&M 1964, 3438.Google Scholar
Rowley, C. W., Colonius, T. & Basuz, A. J. 2002 On self-sustained oscillations in two-dimensional compressible flow over rectangular cavities. J. Fluid Mech. 455, 315346.Google Scholar
Solari, H. G., Natiello, M. A. & Mindlin, G. B. 1996 Nonlinear Dynamics: A Two-Way Trip from Physics to Math. Taylor & Francis.Google Scholar
Tomboulides, A. G. & Orszag, S. A. 2000 Numerical investigation of transitional and weak turbulent flow past a sphere. J. Fluid Mech. 416, 4573.Google Scholar
Tuerke, F., Sciamarella, D., Pastur, L. R., Lusseyran, F. & Artana, G. 2015 Frequency-selection mechanism in incompressible open-cavity flows via reflected instability waves. Phys. Rev. E 91 (1), 013005.Google Scholar
Villermaux, E. & Hopfinger, E. J. 1994 Self-sustained oscillations of a confined jet: a case study for the non-linear delayed saturation model. Physica D 72 (3), 230243.Google Scholar
Welch, P. 1967 The use of fast fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15 (2), 7073.Google Scholar
Wesseling, P. 1992 An Introduction to Multigrid Method. Wiley.Google Scholar
Zhou, Y., Zhang, H. J. & Yiu, M. W. 2002 The turbulent wake of two side-by-side circular cylinders. J. Fluid Mech. 458, 303332.CrossRefGoogle Scholar
Ziada, S. & Rockwell, D. 1982 Oscillations of an unstable mixing layer impinging upon an edge. J. Fluid Mech. 124, 307334.Google Scholar