Published online by Cambridge University Press: 11 October 2023
This paper investigates the nonlinear evolution and acoustic radiation of coherent structures (CS) in the near-nozzle region of a subsonic turbulent circular jet. A CS is taken to be a wavepacket consisting of multiple ring/helical modes, which are considered to be inviscid instability waves supported by the mean-flow profile. As the three-dimensionality of helical modes is weak in the near-nozzle region, the ring and helical modes with the same frequency have nearly the same growth rates and critical levels. They coexist and interact with each other in their common critical layer at high Reynolds numbers. The self and mutual quadratic interactions generate a mean-flow distortion and streaks, which act back on the fundamental components through the cubic interaction. The amplitude of the CS is governed by an integro-partial-differential equation, a significant feature of which is that differentiations with respect to the azimuthal coordinate appear in the history-dependent nonlinear terms. The non-parallelism of the mean flow as well as the impact of fine-scale turbulence on CS are taken into account and found to affect the nonlinear terms. By solving the amplitude equation, the development of the constituting modes, streamwise vortices and streaks are described. For CS consisting of frequency sideband, low-frequency components are excited nonlinearly and amplify to reach a considerable level. By analysing the large-distance asymptote of the perturbation, the low-frequency acoustic waves are found to be emitted by the temporally–spatially varying mean-flow distortion and streaks generated by the nonlinear interactions of the CS, and are thereby determined on the basis of first principles. Interestingly, the energetic part of the streaky structure that contributes to the nonlinear dynamics does not radiate directly, and instead the Reynolds stresses driving the subdominant radiating components represent the true physical sources.