Published online by Cambridge University Press: 26 April 2006
In this work we consider how nonlinear hydrodynamic effects can lead to a mean force of interaction between two spheres of equal radius a undergoing translational fluctuations parallel or perpendicular to their line of centres. Motivated by amplitudes and Reynolds numbers characteristic of Brownian motion in colloidal systems, nonlinearities due to motion of the boundaries and to inertia throughout the fluid are treated as regular perturbations of the time-dependent Stokes equations. This formulation ultimately leads to a prescription for computing, at leading order, the time-average nonlinear force for the case of pure oscillatory modes – which represents the Fourier decomposition of more general motions. The associated hydrodynamic problems are solved numerically using a least-squares boundary singularity method. Frequency-dependent results over the whole spectrum are presented for a sphere-sphere gap equal to one radius; illustrative calculations are also carried out at other separations. Subsequently we extend the analysis of nonlinear drift to a Langevin equation formulation of the more complex problem of stochastic motion due to thermal fluctuations in the suspending fluid, i.e. Brownian motion. By integrating (numerically) over the spectrum of frequencies, we quantify how the mutual interactions of all translational disturbance modes give rise, on ensemble average, to a stochastic nonlinear force of interaction between the particles. It is particularly interesting that this net interaction – arising from a zero-mean random force – is of O(1) on the Brownian scale kT/a, even though it represents a small O(Re) correction at each frequency of pure oscillations. Finally, we discuss how the presence of stochastic nonlinear drift would lead to non-uniform equilibrium distributions of dilute colloidal suspensions, unless one adds to the random force in the Langevin equation a cancelling non-zero mean component.