Published online by Cambridge University Press: 26 April 2006
In Jeffery–Hamel flow, the motion of a viscous incompressible fluid between rigid plane walls, unidirectional flow is impossible if the angle between the walls exceeds a critical value of 2α2 which depends on the Reynolds number. In this paper the nonlinear development of the flow near this critical value is studied through numerical solutions of the two-dimensional Navier–-Stokes equations for flow in divergent channels with piecewise straight walls. It is found that if the angle between the walls exceeds 2α2 then Jeffery–-Hamel flow does not occur, and the solution takes the form of a large-amplitude wave with eddies attached alternately to the upper and lower walls. When viewed in the appropriate coordinate system, far downstream the wave has constant wavelength and strength, although, physically, there is a linear increase in wavelength with distance downstream, i.e. the wavelength is proportional to the channel width. If the angle between the walls is less than 2α2, then the existence (or otherwise) of the wave depends on the conditions near the inlet, in particular the local geometry of the channel. Jeffery–-Hamel flow is obtained downstream of the inlet for angles well below 2α2, but close to but below the critical value, solutions have been obtained with the wave extending (infinitely) far downstream. The wavelengths obtained numerically were compared with those from linear theory with spatially developing steady modes. No agreement was found: the wavelengths from the steady Navier–-Stokes solutions are significantly larger than that predicted by the theory. However, in other important aspects the results of this study are consistent with those from previous studies of the development/existence of Jeffery–-Hamel flow, in particular as regards the importance of the upstream conditions and the subcritical nature of the spatial development of the flow near the critical boundary in the Reynolds number–wall angle parameter space.