Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T02:44:23.093Z Has data issue: false hasContentIssue false

Non-isothermal bubble rise: non-monotonic dependence of surface tension on temperature

Published online by Cambridge University Press:  10 December 2014

M. K. Tripathi
Affiliation:
Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Yeddumailaram 502 205, Andhra Pradesh, India
K. C. Sahu
Affiliation:
Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Yeddumailaram 502 205, Andhra Pradesh, India
G. Karapetsas
Affiliation:
Department of Mechanical Engineering, University of Thessaly, Volos 38334, Greece
K. Sefiane
Affiliation:
School of Engineering, University of Edinburgh, Edinburgh EH9 3JL, UK International Institute for Carbon-Neutral Energy Research (I2CNER) Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
O. K. Matar*
Affiliation:
Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
*
Email address for correspondence: [email protected]

Abstract

We study the motion of a bubble driven by buoyancy and thermocapillarity in a tube with a non-uniformly heated walls, containing a so-called ‘self-rewetting fluid’; the surface tension of the latter exhibits a parabolic dependence on temperature, with a well-defined minimum. In the Stokes flow limit, we derive the conditions under which a spherical bubble can come to rest in a self-rewetting fluid whose temperature varies linearly in the vertical direction, and demonstrate that this is possible for both positive and negative temperature gradients. This is in contrast to the case of simple fluids whose surface tension decreases linearly with temperature, for which bubble motion is arrested only for negative temperature gradients. In the case of self-rewetting fluids, we propose an analytical expression for the position of bubble arrestment as a function of other dimensionless numbers. We also perform direct numerical simulation of axisymmetric bubble motion in a fluid whose temperature increases linearly with vertical distance from the bottom of the tube; this is done for a range of Bond and Galileo numbers, as well as for various parameters that govern the functional dependence of surface tension on temperature. We demonstrate that bubble motion can be reversed and then arrested only in self-rewetting fluids, and not in linear fluids, for sufficiently small Bond numbers. We also demonstrate that considerable bubble elongation is possible under significant wall confinement, and for strongly self-rewetting fluids and large Bond numbers. The mechanisms underlying the phenomena observed are elucidated by considering how the surface tension dependence on temperature affects the thermocapillary stresses in the flow.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, Y., Iwasaki, A. & Tanaka, K. 2004 Microgravity experiments on phase change of self-rewetting fluids. Ann. N.Y. Acad. Sci. 1027, 269285.CrossRefGoogle ScholarPubMed
Acrivos, A., Jeffrey, D. J. & Saville, D. A. 1990 Particle migration in suspensions by thermocapillary or electrophoretic motion. J. Fluid Mech. 212, 95110.CrossRefGoogle Scholar
Ahmed, S. & Carey, V. P. 1999 Effects of surface orientation on the pool boiling heat transfer in water/2-propanol mixtures. Trans. ASME J. Heat Transfer 121, 8088.CrossRefGoogle Scholar
Balasubramaniam, R. 1998 Thermocapillary and buoyant bubble motion with variable viscosity. Intl J. Multiphase Flow 24 (4), 679683.CrossRefGoogle Scholar
Balasubramaniam, R. & Chai, An.-Ti. 1987 Thermocapillary migration of droplets: an exact solution for small Marangoni numbers. J. Colloid Interface Sci. 119 (2), 531538.CrossRefGoogle Scholar
Balasubramaniam, R. & Subramaniam, R. S. 1996 Thermocapillary bubble migration – thermal boundary layers for large Marangoni numbers. Intl J. Multiphase Flow 22 (3), 593612.CrossRefGoogle Scholar
Balasubramaniam, R. & Subramanian, R. S. 2000 The migration of a drop in a uniform temperature gradient at large Marangoni numbers. Phys. Fluids 12 (4), 733743.CrossRefGoogle Scholar
Balasubramaniam, R. & Subramanian, R. S. 2004 Thermocapillary convection due to a stationary bubble. Phys. Fluids 16 (8), 31313137.CrossRefGoogle Scholar
Borcia, R. & Bestehorn, M. 2007 Phase-field simulations for drops and bubbles. Phys. Rev. E 75 (5), 056309.CrossRefGoogle ScholarPubMed
Brackbill, J. U., Kothe, D. B. & Zemach, C. 1992 A continuum method for modeling surface tension. J. Comput. Phys. 100, 335354.CrossRefGoogle Scholar
Brady, P. T., Herrmann, M. & Lopez, J. M. 2011 Confined thermocapillary motion of a three-dimensional deformable drop. Phys. Fluids 23 (2), 022101.CrossRefGoogle Scholar
Chen, J., Dagan, Z. & Maldarelli, C. 1991 The axisymmetric thermocapillary motion of a fluid particle in a tube. J. Fluid Mech. 233, 405437.CrossRefGoogle Scholar
Chen, J. C. & Lee, Y. T. 1992 Effect of surface deformation on thermocapillary bubble migration. AIAA J. 30 (4), 993998.CrossRefGoogle Scholar
Crespo, A., Migoya, E. & Manuel, F. 1998 Thermocapillary migration of bubbles at large Reynolds numbers. Intl J. Multiphase Flow 24 (4), 685692.CrossRefGoogle Scholar
Ding, H., Spelt, P. D. M. & Shu, C. 2007 Diffuse interface model for incompressible two-phase flows with large density ratios. J. Comput. Phys. 226, 20782095.CrossRefGoogle Scholar
Haj-Hariri, H., Shi, Q. & Borhan, A. 1997 Thermocapillary motion of deformable drops at finite Reynolds and Marangoni numbers. Phys. Fluids 9 (4), 845855.CrossRefGoogle Scholar
Hasan, M. & Balasubramaniam, R. 1989 Thermocapillary migration of a large gas slug in a tube. J. Thermophys. Heat Transfer 3 (1), 8789.CrossRefGoogle Scholar
Herrmann, M., Lopez, J. M., Brady, P. & Raessi, M. 2008 Thermocapillary motion of deformable drops and bubbles. In Proceedings of the Summer Program 2008, p. 155. Stanford University. Center for Turbulence Research.Google Scholar
Hu, Y., Liu, T., Li, X. & Wang, S. 2014 Heat transfer enhancement of micro oscillating heat pipes with self-rewetting fluid. Intl J. Heat Mass Transfer 70, 496503.CrossRefGoogle Scholar
Karapetsas, G., Sahu, K. C., Sefiane, K. & Matar, O. K. 2014 Thermocapillary-driven motion of a sessile drop: effect of non-monotonic dependence of surface tension on temperature. Langmuir 30 (15), 43104321.CrossRefGoogle ScholarPubMed
Keh, H. J., Chen, P. Y. & Chen, L. S. 2002 Thermocapillary motion of a fluid droplet parallel to two plane walls. Intl J. Multiphase Flow 28 (7), 11491175.CrossRefGoogle Scholar
Leal, L. G. 1992 Laminar Flow and Convective Transport Processes. Butterworth and Heinemann.Google Scholar
Leshansky, A. M., Lavrenteva, O. M. & Nir, A. 2001 Thermocapillary migration of bubbles: convective effects at low Péclet number. J. Fluid Mech. 443, 377401.CrossRefGoogle Scholar
Leshansky, A. M. & Nir, A. 2001 Thermocapillary alignment of gas bubbles induced by convective transport. J. Colloid Interface Sci. 240, 544551.CrossRefGoogle ScholarPubMed
Limbourgfontaine, M. C., Petre, G. & Legros, J. C. 1986 Thermocapillary movements under at a minimum of surface tension. Naturwissenschaften 73, 360362.CrossRefGoogle Scholar
Liu, H., Valocchi, A. J., Zhang, Y. & Kang, Q. 2013 Phase-field-based lattice Boltzmann finite-difference model for simulating thermocapillary flows. Phys. Rev. E 87 (1), 013010.CrossRefGoogle ScholarPubMed
Ma, C. & Bothe, D. 2011 Direct numerical simulation of thermocapillary flow based on the volume of fluid method. Intl J. Multiphase Flow 37 (9), 10451058.CrossRefGoogle Scholar
Mahesri, S., Haj-Hariri, H. & Borhan, A. 2014 Effect of interface deformability on thermocapillary motion of a drop in a tube. Heat Mass Transfer 50 (3), 363372.CrossRefGoogle Scholar
Mazouchi, A. & Homsy, G. M. 2000 Thermocapillary migration of long bubbles in cylindrical capillary tubes. Phys. Fluids 12 (3), 542549.CrossRefGoogle Scholar
Mazouchi, A. & Homsy, G. M. 2001 Thermocapillary migration of long bubbles in polygonal tubes. I. Theory. Phys. Fluids 13 (6), 15941600.CrossRefGoogle Scholar
Mcgillis, W. R. & Carey, V. P. 1996 On the role of Marangoni effects on the critical heat flux for pool boiling of binary mixtures. Trans. ASME J. Heat Transfer 118, 103109.CrossRefGoogle Scholar
Merritt, R. M., Morton, D. S. & Subramanian, R. S. 1993 Flow structures in bubble migration under the combined action of buoyancy and thermocapillarity. J. Colloid Interface Sci. 155 (1), 200209.CrossRefGoogle Scholar
Meyyappan, M. & Subramanian, R. S. 1987 Thermocapillary migration of a gas bubble in an arbitrary direction with respect to a plane surface. J. Colloid Interface Sci. 115 (1), 206219.CrossRefGoogle Scholar
Nahme, R. 1940 Beiträge zur hydrodynamischen Theorie der Lagerreibung. Ing.-Arch. 11, 191209.CrossRefGoogle Scholar
Nas, S., Muradoglu, M. & Tryggvason, G. 2006 Pattern formation of drops in thermocapillary migration. Intl J. Heat Mass Transfer 49 (13–14), 22652276.CrossRefGoogle Scholar
Nas, S. & Tryggvason, G. 2003 Thermocapillary interaction of two bubbles or drops. Intl J. Multiphase Flow 29 (7), 11171135.CrossRefGoogle Scholar
Petre, G. & Azouni, M. A. 1984 Experimental evidence for the minimum of surface tension with temperature at aqueous alcohol solution air interfaces. J. Colloid Interface Sci. 98, 261263.CrossRefGoogle Scholar
Popinet, S. 2003 Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries. J. Comput. Phys. 190, 572600.CrossRefGoogle Scholar
Savino, R., Cecere, A. & Paola, R. D. 2009 Surface tension driven flow in wickless heat pipes with self-rewetting fluids. Intl J. Heat Fluid Flow 30, 380388.CrossRefGoogle Scholar
Savino, R., Cecere, A., Vaerenbergh, S. V., Abe, Y., Pizzirusso, G., Tzevelecos, W., Mojahed, M. & Galand, Q. 2013 Some experimental progresses in the study of the self-rewetting fluids for the SELENE experiment to be carried in the Thermal Platform 1 hardware. Acta Astronaut. 89, 179188.CrossRefGoogle Scholar
Subramanian, R. S. 1981 Slow migration of a gas bubble in a thermal gradient. AIChE J. 27 (4), 646654.CrossRefGoogle Scholar
Subramanian, R. S. 1983 Thermocapillary migration of bubbles and droplets. Adv. Space Res. 3 (5), 145153.CrossRefGoogle Scholar
Subramanian, R. S. 1992 The motion of bubbles and drops in reduced gravity. In Transport Processes in Drops, Bubbles and Particles (ed. Chhabra, R. D. & Dekee, D.), pp. 141. Hemisphere.Google Scholar
Subramanian, R. S., Balasubramaniam, R. & Wozniak, G. 2002 Fluid mechanics of bubbles and drops. In Physics of Fluids in Microgravity (ed. Monti, R.), pp. 149177. Taylor and Francis.Google Scholar
Sussman, M. & Smereka, P. 1997 Axisymmetric free boundary problems. J. Fluid Mech. 341, 269294.CrossRefGoogle Scholar
Suzuki, K., Nakano, M. & Itoh, M. 2005 Subcooled boiling of aqueous solution of alcohol. In Proceedings of the 6th KSME-JSME Joint Conference on Thermal and Fluid Engineering Conference, pp. 2123.Google Scholar
Tripathi, M. K., Sahu, K. C. & Govindarajan, R. 2014 Why a falling drop does not in general behave like a rising bubble. Sci. Rep. 4, 4771.CrossRefGoogle Scholar
Vochten, R. & Petre, G. 1973 Study of heat of reversible adsorption at air-solution interface 2. Experimental determination of heat of reversible adsorption of some alcohols. J. Colloid Interface Sci. 42, 320327.CrossRefGoogle Scholar
Welch, S. W. J. 1998 Transient thermocapillary migration of deformable bubbles. J. Colloid Interface Sci. 208 (2), 500508.CrossRefGoogle ScholarPubMed
Wilson, S. K. 1993 The steady thermocapillary – driven motion of a large droplet in a closed tube. Phys. Fluids A 5 (8), 20642066.CrossRefGoogle Scholar
Wu, Z.-B. & Hu, W.-R. 2012 Thermocapillary migration of a planar droplet at moderate and large Marangoni numbers. Acta Mechanica 223 (3), 609626.CrossRefGoogle Scholar
Wu, Z.-B. & Hu, W.-R. 2013 Effects of Marangoni numbers on thermocapillary drop migration: constant for quasi-steady state? J. Math. Phys. 54 (2), 023102.CrossRefGoogle Scholar
Yariv, E. & Shusser, M. 2006 On the paradox of thermocapillary flow about a stationary bubble. Phys. Fluids 18 (7), 072101.CrossRefGoogle Scholar
Young, N. O., Goldstein, J. S. & Block, M. J. 1959 The motion of bubbles in a vertical temperature gradient. J. Fluid Mech. 6 (03), 350356.CrossRefGoogle Scholar
Zhang, L., Subramanian, R. S. & Balasubramaniam, R. 2001 Motion of a drop in a vertical temperature gradient at small Marangoni number – the critical role of inertia. J. Fluid Mech. 448, 197211.CrossRefGoogle Scholar
Zhao, J.-F., Li, Z.-D., Li, H.-X. & Li, J. 2010 Thermocapillary migration of deformable bubbles at moderate to large Marangoni number in microgravity. Microgravity Sci. Technol. 22 (3), 295303.CrossRefGoogle Scholar