Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-08T04:36:41.443Z Has data issue: false hasContentIssue false

The non-Gaussian statistics of the velocity field in low-resolution large-eddy simulations of homogeneous turbulence

Published online by Cambridge University Press:  26 April 2006

Marco Briscolini
Affiliation:
IBM ECSEC, European Center for Scientific and Engineering Computing, Viale Oceano Pacifico, 171, 00144 Roma, Italy
Paolo Santangelo
Affiliation:
IBM ECSEC, European Center for Scientific and Engineering Computing, Viale Oceano Pacifico, 171, 00144 Roma, Italy

Abstract

A low-resolution (643) large-eddy model of forced homogeneous turbulence is numerically simulated using Kraichnan's eddy viscosity. The introduction of a reliable statistical estimate of the ζp exponents allows one to perform a detailed statistical analysis of the velocity field and shows that the probability distribution functions, the structure functions and the power-law exponents ζp agree with previous numerical and experimental results obtained at much higher effective resolution. This result shows how a simple modelling of the energy transfer produces self-similar dynamics extending to the small scales and obtains the right statistical properties of the velocity field.

Type
Research Article
Copyright
© 1994 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anselmet, F. Gagne, Y. Hopfinger, E. J. & Antonia R. A. 1984 High-order velocity structure functions in turbulent shear flows. J. Fluid Mech. 140, 63.Google Scholar
Antonia, R. A. Satyaprakash, B. R. & Hussain, A. K. M. F. 1982 Statistics of fine-scale velocity in turbulent plane and circular jets. J. Fluid Mech. 119, 55.Google Scholar
Benzi, R., Biferale, L., Parisi, G., Vulpiani, A. & Vergassola, M. 1991 Multifractality in the statistics of the velocity gradients in turbulence. Phys. Rev. Lett. 67, 2302.Google Scholar
Briscolini, M. & Santangelo, P. 1992 Numerical simulations of three-dimensional homogeneous isotropic flows. In Proc. Conf. on Parallel Computing: Problems, Methods and Applications (ed. P. Messina & A. Murli). Elsevier.
Castaigne, B. Gagne, Y. & Hopfinger, E. J. 1990 Velocity probability density functions of high Reynolds number turbulence. Physica D, 46, 177.Google Scholar
Chollet, J. P. & Lesieur, M. 1981 Parameterization of small scales of three-dimensional isotropic turbulence utilizing spectral closure. J. Atmos. Sci. 38, 2747.Google Scholar
Frisch, U. & Parisi, G. 1985 On singularity structure of fully developed turbulence. In Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics (ed. M. Ghil, R. Benzi, & G. Parisi), p. 84. North-Holland.
Frisch, U. Sulem, P. L. & Nelkin, M. 1978 A simple dynamical model of intermittent fully developed turbulence. J. Fluid Mech. 87, 719.Google Scholar
Hosokawa, I. & Yamamoto, K. 1990 Intermittency exponents and generalized dimensions of a directly simulated fully developed turbulence. Phys. Fluids A, 2, 889.Google Scholar
Kerr, R. 1985 Higher-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence. J. Fluid Mech. 153, 31.Google Scholar
Kida, S. 1991 Log-stable distribution and intermittency of turbulence. J. Phys. Soc. Japan. 60, 5.Google Scholar
Kida, S. & Murakami, Y. 1989 Statistics of velocity gradients at moderate Reynolds numbers. Fluid Dyn. Res. 4, 347.Google Scholar
Kida, S. & Ohkitani, K. 1992 Spatiotemporal intermittency and instability of a forced turbulence. Phys. Fluids A 4, 1018.Google Scholar
Kolmogorov, A. N. 1941 Local structure of turbulence in an incompressible fluid at very high Reynolds numbers. Dokl. Akad. Nauk. SSSR 30, 299.Google Scholar
Kolmogorov, A. N. 1962 A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13, 82.Google Scholar
Kraichnan, R. H. 1974 On Kolmogorov's inertial-range theories. J. Fluid Mech. 62, 305.Google Scholar
Kraichnan, R. H. 1976 Eddy viscosity in two and three dimensions. J. Atmos. Sci. 33, 1521.Google Scholar
Kraichnan, R. H. 1990 Models of intermittency in hydrodynamic turbulence. Phys. Rev. Lett. 65, 575.Google Scholar
Lesieur, M. & Rogallo, R. 1989 Large-eddy simulation of passive scalar diffusion in isotropic turbulence. Phys. Fluids A 1, 718.Google Scholar
Mandelbrot, B. B. 1974 Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier. J. Fluid Mech. 62, 331.Google Scholar
Meneveau, C. & Sreenivasan, K. R. 1987a The multifractal spectrum of the dissipation field in turbulent flows. Nucl. Phys. B (Proc. Suppl.), 2, 49.Google Scholar
Meneveau, C. & Sreenivasan, K. R. 1987b The simple multifractal cascade model for fully developed turbulence. Phys. Rev. Lett. 59, 1424.Google Scholar
Meneveau, C. & Sreenivasan, K. R. 1991 The multifractal nature of turbulent energy dissipation. J. Fluid Mech. 224, 429.Google Scholar
Metais, O. & Lesieur, M. 1992 Spectral large-eddy simulation of isotropic and stably stratified turbulence. J. Fluid Mech. 239, 157.Google Scholar
Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics, Vol.II. MIT Press.
Obukhov, A. M. 1962 Some specific features of atmospheric turbulence. J. Fluid Mech. 13, 77.Google Scholar
Orszag, S. A. 1971 Numerical simulation of incompressible flows within simple boundaries. I. Galerkin (spectral) representation. Stud. Appl. Maths L, 293.Google Scholar
Press, W. H., Flannery, B. P., Teukolsky, S. A. & Vetterling, W. T. 1989 Numerical Recipes, Cambridge Univeristy Press.
She, Z.-S. 1991 Physical model of intermittency in turbulence: near-dissipation-range non-Gaussian statistics. Phys. Rev. Lett. 66, 600.Google Scholar
She, Z.-S. & Orzsag, S. A. 1991 Physical model of intermittency in turbulence: inertial-range non-gaussian statistics. Phys. Rev. Lett. 66, 1701.Google Scholar
Sreenivasan, K. R. & Kailasnath, P. 1993 An update on the intermittency exponent in turbulence. Phys. Fluids A 5, 512.Google Scholar
Vincent, A. & Meneguzzi, M. 1991 The spatial structure and statistical properties of homogeneous turbulence. J. Fluids Mech. 225, 1.Google Scholar
Yakhot, V. & Orszag, S. A. 1986 Renormalization group analysis of turbulence. I. Basic theory. J. Sci. Comput. 1, 3.Google Scholar