Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-09T21:49:53.301Z Has data issue: false hasContentIssue false

No net motion for oscillating near-spheres at low Reynolds numbers

Published online by Cambridge University Press:  04 March 2019

K. Lippera
Affiliation:
LadHyX, UMR CNRS 7646, Ecole polytechnique, 91128 Palaiseau, France
O. Dauchot
Affiliation:
EC2M, UMR CNRS 7083 Gulliver, ESPCI ParisTech, 10 rue Vauquelin, 75005 Paris, France
S. Michelin
Affiliation:
LadHyX, UMR CNRS 7646, Ecole polytechnique, 91128 Palaiseau, France
M. Benzaquen*
Affiliation:
LadHyX, UMR CNRS 7646, Ecole polytechnique, 91128 Palaiseau, France
*
Email address for correspondence: [email protected]

Abstract

We investigate the flow around an oscillating nearly spherical particle at low, yet non-vanishing, Reynolds numbers ($Re$), and the potential resulting locomotion. We analytically demonstrate that no net motion can arise up to order one in $Re$ and order one in the asphericity parameter, regardless of the particle’s shape. Therefore, geometry-induced acoustic streaming propulsion, if any, must arise at higher order.

Type
JFM Rapids
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I. A. 1965 Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. Courier Corporation.Google Scholar
Ahmed, S., Wang, W., Bai, L., Gentekos, D. T., Hoyos, M. & Mallouk, T. E. 2016 Density and shape effects in the acoustic propulsion of bimetallic nanorod motors. ACS Nano 10 (4), 47634769.Google Scholar
Alben, S. & Shelley, M. 2005 Coherent locomotion as an attracting state for a free flapping body. Proc. Natl Acad. Sci. USA 102 (32), 1116311166.Google Scholar
Bechinger, C., Di Leonardo, R., Löwen, H., Reichhardt, C., Volpe, G. & Volpe, G. 2016 Active particles in complex and crowded environments. Rev. Mod. Phys. 88 (4), 150.Google Scholar
Bricard, A., Caussin, J.-B., Desreumaux, N., Dauchot, O. & Bartolo, D. 2013 Emergence of macroscopic directed motion in populations of motile colloids. Nature 503 (7474), 95.Google Scholar
Buttinoni, I., Bialké, J., Kümmel, F., Löwen, H., Bechinger, C. & Speck, T. 2013 Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles. Phys. Rev. Lett. 110 (23), 238301.Google Scholar
Collis, J. F., Chakraborty, D. & Sader, J. E. 2017 Autonomous propulsion of nanorods trapped in an acoustic field. J. Fluid Mech. 825, 2948.Google Scholar
Dreyfus, R., Baudry, J., Roper, M. L., Fermigier, M., Stone, H. A. & Bibette, J. 2005 Microscopic artificial swimmers. Nature 437 (7060), 862865.Google Scholar
Happel, J. & Brenner, H. 1965 Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media. Prentice Hall.Google Scholar
Izri, Z., Van Der Linden, M. N., Michelin, S. & Dauchot, O. 2014 Self-propulsion of pure water droplets by spontaneous Marangoni-stress-driven motion. Phys. Rev. Lett. 113 (24), 248302.Google Scholar
Kim, S. & Karrila, S. J. 1991 Microhydrodynamics: Principles and Selected Applications. Butterworth-Heinemann.Google Scholar
Li, J., Rozen, I. & Wang, J. 2016 Rocket science at the nanoscale. ACS Nano 10, 56195634.Google Scholar
Martinez-Pedrero, F. & Tierno, P. 2015 Magnetic propulsion of self-assembled colloidal carpets: efficient cargo transport via a conveyor-belt effect. Phys. Rev. Appl. 3 (5), 051003.Google Scholar
Michelin, S., Lauga, E. & Bartolo, D. 2013 Spontaneous autophoretic motion of isotropic particles. Phys. Fluids 25 (6), 061701.Google Scholar
Moran, J. L. & Posner, J. D. 2017 Phoretic self-propulsion. Annu. Rev. Fluid Mech. 49, 511540.Google Scholar
Nadal, F. & Lauga, E. 2014 Asymmetric steady streaming as a mechanism for acoustic propulsion of rigid bodies. Phys. Fluids 26 (8), 082001.Google Scholar
Palacci, J., Sacanna, S., Steinberg, A. P., Pine, D. J. & Chaikin, P. M. 2013 Living crystals of light-activated colloidal surfers. Science 339 (6122), 936940.Google Scholar
Purcell, E. M. 1977 Life at low-Reynolds number. Am. J. Phys. 45, 311.Google Scholar
Sabrina, S., Tasinkevych, M., Ahmed, S., Brooks, A. M., Olivera de la Cruz, M., Mallouk, T. E. & Bishop, K. J. M. 2018 Shape-directed microspinners powered by ultrasound. ACS Nano 12 (3), 29392947.Google Scholar
Sani, R. L.1963 Convective instability. PhD thesis, University of Minnesota.Google Scholar
Soto, F., Wagner, G. L., Garcia-Gradilla, V., Gillespie, K. T., Lakshmipathy, D. R., Karshalev, E., Angell, C., Chen, Y. & Wang, J. 2016 Acoustically propelled nanoshells. Nanoscale 8 (41), 1778817793.Google Scholar
Sundararajan, S., Lammert, P. E., Zudans, A. W., Crespi, V. H. & Sen, A. 2008 Catalytic motors for transport of colloidal cargo. Nano Lett. 8 (5), 12711276.Google Scholar
Tiwari, D. K., Behari, J. & Sen, P. 2008 Application of nanoparticles in waste water treatment. World Appl. Sci. J. 3 (3), 417433.Google Scholar
Wang, S. & Wu, N. 2014 Selecting the swimming mechanisms of colloidal particles: bubble propulsion versus self-diffusiophoresis. Langmuir 30, 34773486.Google Scholar
Wang, W., Castro, L. A., Hoyos, M. & Mallouk, T. E. 2012 Autonomous motion of metallic microrods propelled by ultrasound. ACS Nano 6 (7), 61226132.Google Scholar
Wiggins, C. H. & Goldstein, R. E. 1998 Flexive and propulsive dynamics of elastica at low Reynolds number. Phys. Rev. Lett. 80 (17), 3879.Google Scholar
Zhang, W. & Stone, H. A. 1998 Oscillatory motions of circular disks and nearly spherical particles in viscous flows. J. Fluid Mech. 367, 329358.Google Scholar