Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T22:51:45.106Z Has data issue: false hasContentIssue false

New relations for correlation functions in Navier–Stokes turbulence

Published online by Cambridge University Press:  11 February 2010

G. FALKOVICH*
Affiliation:
Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
I. FOUXON
Affiliation:
Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978, Israel
Y. OZ
Affiliation:
Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978, Israel
*
Email address for correspondence: [email protected]

Abstract

We consider the steady-state statistics of turbulence in the inertial interval. The Kolmogorov flux relation (4/5-law) is shown to be a particular case of the general relation on the current–density correlation function. Using that, we derive an analogous flux relation for compressible turbulence and a new exact relation for incompressible turbulence.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cardy, J., Falkovich, G. & Gawedzki, K. 2008 Non-equilibrium Statistical Mechanics and Turbulence, Lond. Math. Soc. Lect. Note Ser. 355. Cambridge University Press.CrossRefGoogle Scholar
Chandrasekhar, S. 1951 The invariant theory of isotropic turbulence in magneto-hydrodynamics. Proc. Roy. Soc. Lond. A 204, 435449.Google Scholar
Chertkov, M., Falkovich, G., Kolokolov, I. & Lebedev, V. 1995 Normal and anomalous scaling of the fourth-order correlation function of a randomly advected passive scalar. Phys. Rev. E 52, 49244941.CrossRefGoogle ScholarPubMed
Chkhetiani, O. 1996 On the third moments in helical turbulence. JETP Lett. 63, 808812.CrossRefGoogle Scholar
Connaughton, C., Rajesh, R. & Zaboronski, O. 2008 Constant flux relation for diffusion-limited cluster–cluster aggregation. Phys. Rev. E 78, 041403.CrossRefGoogle ScholarPubMed
Eyink, G. 2003 4/5-law and energy dissipation anomaly in turbulence. Nonlinearity 16, 137145.CrossRefGoogle Scholar
Falkovich, G., Gawedzki, K. & Vergassola, M. 2001 Particles and fields in fluid turbulence. Rev. Mod. Phys. 73, 913975.CrossRefGoogle Scholar
Falkovich, G., Kazakov, V. & Lebedev, V. 1998 Particle dispersion in a multidimensional random flow with arbitrary temporal correlations. Physica A 249 (1–4), 3646.CrossRefGoogle Scholar
Falkovich, G. & Lebedev, V. 1994 Universal direct cascade in two-dimensional turbulence. Phys. Rev. E 50, 38833899.CrossRefGoogle ScholarPubMed
Falkovich, G. & Lebedev, V. 1997 Single-point velocity distribution in turbulence. Phys. Rev. Lett. 79, 41594161.CrossRefGoogle Scholar
Falkovich, G. & Sreenivasan, K. R. 2006 Lessons from hydrodynamic turbulence. Phys. Today 59 (4), 4349.CrossRefGoogle Scholar
Forster, D. 1975 Hydrodynamic Fluctuations, Broken Symmetry and Correlation Functions. Perseus Books.Google Scholar
Fournier, J.-D., Frisch, U. & Rose, H. 1978 Infinite-dimensional turbulence. J. Phys. A 11, 187198.CrossRefGoogle Scholar
Frisch, U. 1995 Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press.CrossRefGoogle Scholar
Galtier, S. 2008 von Kármán–Howarth equations for Hall magnetohydrodynamic flows. Phys. Rev. E 77, 015302(R).CrossRefGoogle ScholarPubMed
Gawedzki, K. 1999 Easy Turbulence. ArXiv:Chao-dyn/9907024.Google Scholar
Gomez, T., Politano, H. & Pouquet, A. 2000 An exact relationship for third-order structure functions in helical flows. Phys. Rev. E 61, 53215325.CrossRefGoogle ScholarPubMed
Gotoh, T. & Nakano, T. 2003 Role of pressure in turbulence. J. Stat. Phys. 113, 855874.CrossRefGoogle Scholar
Gotoh, T., Watanabe, Y., Shiga, Y., Nakano, T. & Suzuki, E. 2007 Statistical properties of four-dimensional turbulence. Phys. Rev. E 75, 016310.CrossRefGoogle ScholarPubMed
Hill, R. J. & Wilczak, J. M. 1995 Pressure structure functions and spectra for locally isotropic turbulence. J. Fluid Mech. 296, 247269.CrossRefGoogle Scholar
Kolmogorov, A. N. 1941 Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk SSSR 32, 16.Google Scholar
Kraichnan, R. H. 1974 Convection of a passive scalar by a quasi-uniform random straining field. J. Fluid Mech. 64, 737762.CrossRefGoogle Scholar
Kraichnan, R. H. 1991 Turbulent cascade and intermittency growth. Proc. R. Soc. Lond. A 434, 65.Google Scholar
Kritsuk, A. G., Norman, M. L., Padoan, P. & Wagner, R. 2007 The statistics of supersonic isothermal turbulence. Astrophys. J. 665 (1), 416431.CrossRefGoogle Scholar
Landau, L. & Lifshits, E. 1987 Fluid Mechanics. Pergamon Press.Google Scholar
L'vov, V., Podivilov, E. & Procaccia, I. 1997 Exact result for the 3rd order correlations of velocity in turbulence with helicity. arxiv:chao-dyn/9705016v2Google Scholar
Nelkin, M. 1975 Scaling theory of hydrodynamic turbulence. Phys. Rev. A 11, 17371743.CrossRefGoogle Scholar
Podesta, J. J. 2008 Laws for third-order moments in homogeneous anisotropic incompressible magnetohydrodynamic turbulence. J. Fluid Mech. 609, 171194.CrossRefGoogle Scholar
Podesta, J. J., Forman, M. A. & Smith, C. W. 2007 Anisotropic form of third-order moments and relationship to the cascade rate in axisymmetric magnetohydrodynamic turbulence. Phys. Plasmas 14, 092305.CrossRefGoogle Scholar
Politano, H. & Pouquet, A. 1998 von Kármán–Howarth equation for magnetohydrodynamics and its consequences on third-order longitudinal structure and correlation functions. Phys. Rev. E 57, R21R24.CrossRefGoogle Scholar
Stanley, H. E. 1968 Spherical model as the limit of infinite spin dimensionality. Phys. Rev. 176, 718722.CrossRefGoogle Scholar
Yaglom, A. M. 1949 On the local structure of a temperature field in a turbulent flow. Dokl. Akad. Nauk SSSR 69, 743.Google Scholar
Yakhot, V. 2001 Mean-field approximation and a small parameter in turbulence theory. Phys. Rev. E 63, 026307.CrossRefGoogle Scholar
Zakharov, V., L'vov, V. & Falkovich, G. 1992 Kolmogorov Spectra of Turbulence. Springer.CrossRefGoogle Scholar