Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T04:25:07.005Z Has data issue: false hasContentIssue false

New patterns in high-speed granular flows

Published online by Cambridge University Press:  16 March 2015

Nicolas Brodu*
Affiliation:
Institut de Physique de Rennes, UMR CNRS 6251, Université de Rennes 1, Campus de Beaulieu, Bâtiment 11A, 263 Avenue Général Leclerc, 35042 Rennes CEDEX, France
Renaud Delannay
Affiliation:
Institut de Physique de Rennes, UMR CNRS 6251, Université de Rennes 1, Campus de Beaulieu, Bâtiment 11A, 263 Avenue Général Leclerc, 35042 Rennes CEDEX, France
Alexandre Valance
Affiliation:
Institut de Physique de Rennes, UMR CNRS 6251, Université de Rennes 1, Campus de Beaulieu, Bâtiment 11A, 263 Avenue Général Leclerc, 35042 Rennes CEDEX, France
Patrick Richard
Affiliation:
L’UNAM Université, IFSTTAR, GPEM, Site de Nantes, Route de Bouaye, 44344 Bouguenais CEDEX, France
*
Email address for correspondence: [email protected]

Abstract

We report on new patterns in high-speed flows of granular materials obtained by means of extensive numerical simulations. These patterns emerge from the destabilization of unidirectional flows upon increase of mass holdup and inclination angle, and are characterized by complex internal structures, including secondary flows, heterogeneous particle volume fraction, symmetry breaking and dynamically maintained order. In particular, we evidenced steady and fully developed ‘supported’ flows, which consist of a dense core surrounded by a highly energetic granular gas. Interestingly, despite their overall diversity, these regimes are shown to obey a scaling law for the mass flow rate as a function of the mass holdup. This unique set of three-dimensional flow regimes raises new challenges for extending the scope of current granular rheological models.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Börzsönyi, T., Ecke, R. E. & McElwaine, J. N. 2009 Patterns in flowing sand: understanding the physics of granular flow. Phys. Rev. Lett. 103, 178302.CrossRefGoogle ScholarPubMed
Brodu, N., Richard, P. & Delannay, R. 2013 Shallow granular flows down flat frictional channels: steady flows and longitudinal vortices. Phys. Rev. E 87, 022202.Google Scholar
Campbell, C. S. 1989 Self-lubrication for long runout landslides. J. Geol. 97 (6), 653665.Google Scholar
Cundall, P. A. & Strack, O. D. L. 1979 A discrete numerical model for granular assemblies. Géotechnique 29, 4765.Google Scholar
Delannay, R., Louge, M., Richard, P., Taberlet, N. & Valance, A. 2007 Towards a theoretical picture of dense granular flows down inclines. Nat. Mater 6, 99108.Google Scholar
Eshuis, P., Van der Weele, K., Alam, M., Van Gerner, H., Van Der Hoef, M., Kuipers, H., Luding, S., Van Der Meer, D. & Lohse, D. 2013 Buoyancy driven convection in vertically shaken granular matter: experiment, numerics, and theory. Granul. Matt. 15 (6), 893911.CrossRefGoogle Scholar
Forterre, Y. & Pouliquen, O. 2002 Stability analysis of rapid granular chute flows: formation of longitudinal vortices. J. Fluid Mech. 467, 361387.Google Scholar
GDR-MiDi 2004 On dense granular flows. Eur. Phys. J. E 14 (4), 341365.Google Scholar
Holyoake, A. J. & McElwaine, J. N. 2012 High-speed granular chute flows. J. Fluid Mech. 710, 3571.Google Scholar
Jenkins, J. T. & Askari, E. 1999 Hydraulic theory for a debris flow supported on a collisional shear layer. Chaos 9, 654659.Google Scholar
Louge, M. Y. & Keast, S. C. 2001 On dense granular flows down flat frictional inclines. Phys. Fluids 13 (5), 12131233.Google Scholar
Luding, S. 2008 Introduction to discrete element methods: basics of contact force models and how to perform the micro–macro transition to continuum theory. Eur. J. Env. Civil Eng. 12 (7–8), 785826.Google Scholar
McElwaine, J., Takagi, D. & Huppert, H. 2012 Surface curvature of steady granular flows. Granul. Matt. 14 (2), 229234.Google Scholar
McNamara, S. & Young, W. R. 1994 Inelastic collapse in two dimensions. Phys. Rev. E 50, 2831.Google Scholar
Silbert, L. E., Ertas, D., Grest, G. S., Halsey, T. C., Levine, D. & Plimpton, S. J. 2001 Granular flow down an inclined plane: Bagnold scaling and rheology. Phys. Rev. E 64, 051302.Google Scholar
Taberlet, N., Richard, P., Jenkins, J. T. & Delannay, R. 2007 Density inversion in rapid granular flows: the supported regime. Eur. Phys. J. E 22 (1), 1724.Google Scholar
Supplementary material: File

Brodu supplementary material

Figures S1-S5

Download Brodu supplementary material(File)
File 14.1 MB