Article contents
New hydroelastic solitary waves in deep water and their dynamics
Published online by Cambridge University Press: 08 January 2016
Abstract
A numerical study of fully nonlinear waves propagating through a two-dimensional deep fluid covered by a floating flexible plate is presented. The nonlinear model proposed by Toland (Arch. Rat. Mech. Anal., vol. 289, 2008, pp. 325–362) is used to formulate the pressure exerted by the thin elastic sheet. The symmetric solitary waves previously found by Guyenne & Părău (J. Fluid Mech., vol. 713, 2012, pp. 307–329) and Wang et al. (IMA J. Appl. Maths, vol. 78, 2013, pp. 750–761) are briefly reviewed. A new class of hydroelastic solitary waves which are non-symmetric in the direction of wave propagation is then computed. These asymmetric solitary waves have a multi-packet structure and appear via spontaneous symmetry-breaking bifurcations. We study in detail the stability properties of both symmetric and asymmetric solitary waves subject to longitudinal perturbations. Some moderate-amplitude symmetric solitary waves are found to be stable. A series of numerical experiments are performed to show the non-elastic behaviour of two interacting stable solitary waves. The large response generated by a localised steady pressure distribution moving at a speed slightly below the minimum of the phase speed (called the transcritical regime in the literature) is also examined. The direct numerical simulation of the fully nonlinear equations with a single load reveals that in this range the generated waves are of finite amplitude. This includes a perturbed depression solitary wave, which is qualitatively similar to the large response observed in experiments. The excitations of stable elevation solitary waves are achieved by applying multiple loads moving with a speed in the transcritical regime.
- Type
- Papers
- Information
- Copyright
- © 2016 Cambridge University Press
References
- 22
- Cited by