Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T20:00:03.408Z Has data issue: false hasContentIssue false

New dynamic subgrid-scale heat flux models for large-eddy simulation of thermal convection based on the general gradient diffusion hypothesis

Published online by Cambridge University Press:  14 May 2008

BING-CHEN WANG
Affiliation:
Defence Research & Development Canada – Suffield, P.O. Box 4000, Medicine Hat, AB, T1A 8K6, [email protected], [email protected]
EUGENE YEE
Affiliation:
Defence Research & Development Canada – Suffield, P.O. Box 4000, Medicine Hat, AB, T1A 8K6, [email protected], [email protected]
DONALD J. BERGSTROM
Affiliation:
Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, S7N 5A9, SK, [email protected]
OAKI IIDA
Affiliation:
Department of Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, [email protected]

Abstract

Three new dynamic tensor thermal diffusivity subgrid-scale (SGS) heat flux (HF) models are proposed for large-eddy simulation of thermal convection. The constitutive relations for the proposed modelling approaches represent the most general explicit algebraic formulations possible for the family of SGS HF models constructed using the resolved temperature gradient and SGS stress tensor. As a result, these three new models include a number of previously proposed dynamic SGS HF models as special cases. In contrast to the classical dynamic eddy thermal diffusivity SGS HF model, which strictly requires the SGS heat flux be aligned with the negative of the resolved temperature gradient, the three new models proposed here admit more degrees of freedom, and consequently provide a more realistic geometrical and physical representation of the SGS HF vector. To validate the proposed models, numerical simulations have been performed based on two benchmark test cases of neutrally and unstably stratified horizontal channel flows.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Armenio, V. & Sarkar, S. 2002 An investigation of stably stratified turbulent channel flow using large-eddy simulation. J. Fluid Mech. 459, 142.CrossRefGoogle Scholar
Avancha, R. V. R. & Pletcher, R. H. 2002 Large eddy simulation of the turbulent flow past a backward-facing step with heat transfer and property variations. Intl. J. Heat Fluid Flow 23, 601614.CrossRefGoogle Scholar
Bardina, J., Ferziger, J. H. & Reynolds, W. C. 1980 Improved Subgrid-Scale Models for Large-Eddy Simulation. AIAA Paper 80-1357.CrossRefGoogle Scholar
Batchelor, G. K. 1949 Diffusion in a field of homogeneous turbulence. Austral. J. Sci. Res. A 2, 437450.Google Scholar
Broglia, R., Pascarelli, A. & Piomelli, U. 2003 Large-eddy simulations of ducts with a free surface. J. Fluid Mech. 484, 223253.CrossRefGoogle Scholar
Clark, R. A., Ferziger, J. H. & Reynolds, W. C. 1979 Evaluation of subgrid-scale models using an accurately simulated turbulent flow. J. Fluid Mech. 91, 116.CrossRefGoogle Scholar
Dailey, L. D., Meng, N. & Pletcher, R. H. 2003 Large eddy simulation of constant heat flux turbulent channel flow with property variations: quasi-developed model and mean flow results. Trans. ASME: J. Heat Transfer 125, 2738.CrossRefGoogle Scholar
Daly, B. J. & Harlow, F. H. 1970 Transport equations in turbulence. Phys. Fluids 13, 26342649.CrossRefGoogle Scholar
Fukui, K., Nakagima, M. & Ueda, H. 1991 Coherent structure of turbulent longitudinal vortices in unstably-stratified turbulent flow. Intl. J. Heat Mass Transfer 34, 23732385.Google Scholar
Fureby, C. & Grinstein, F. F. 1999 Monotonically integrated large eddy simulation of free shear flows. AIAA J. 37, 544556.CrossRefGoogle Scholar
Garg, R. P., Ferziger, J. H., Monismith, S. G. & Koseff, J. R. 2000 Stably stratified turbulent channel flows. I. Stratification regimes and turbulence suppression mechanism. Phys. Fluids 12, 25692594.CrossRefGoogle Scholar
Gatski, T. B. & Speziale, C. G. 1993 On explicit algebraic stress models for complex turbulent flows. J. Fluid Mech. 254, 5978.CrossRefGoogle Scholar
Germano, M., Piomelli, U., Moin, P. & Cabot, W. H. 1991 A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3, 17601765.CrossRefGoogle Scholar
Geurts, B. J. & Fröhlich, J. 2002 A framework for predicting accuracy limitations in large-eddy simulation. Phys. Fluids 14, L41L44.CrossRefGoogle Scholar
Ghosal, S. & Rogers, M. M. 1997 A numerical study of self-similarity in a turbulent plane wake using large-eddy simulations. Phys. Fluids 9, 17291739.CrossRefGoogle Scholar
Hanjalić, K. 2002 One-point closure models for buoyancy-driven turbulent flows. Annu. Rev. Fluid Mech. 34, 321347.CrossRefGoogle Scholar
Higgins, C. W., Parlange, M. B. & Meneveau, C. 2004 The heat flux and the temperature gradient in the lower atmosphere. Geophys. Res. Lett. 31 (L22105), 15.CrossRefGoogle Scholar
Horiuti, K. 2003 Roles of non-aligned eigenvectors of strain-rate and subgrid-scale stress tensors in turbulence generation. J. Fluid Mech. 491, 65100.CrossRefGoogle Scholar
Iida, O. & Kasagi, N. 1997 Direct numerical simulation of unstably stratified turbulent channel flow. Trans. ASME: J. Heat Transfer 119, 53–61, DNS data available from the Turbulence and Heat Transfer Laboratory (N. Kasagi) at University of Tokyo, http://www.thtlab.t.u-tokyo.ac.jp/.CrossRefGoogle Scholar
Jiménez, C., Valiño, L. & Dopazo, C. 2001 A priori and a posteriori tests of subgrid scale models for scalar transport. Phys. Fluids 13, 24332436CrossRefGoogle Scholar
Kang, H. S. & Meneveau, C. 2002 Universality of large eddy simulation model parameters across a turbulent wake behind a heated cylinder. J. Turbul. 3 (32), 127.CrossRefGoogle Scholar
Kawamura, H. 2007 DNS Database of wall turbulence and heat transfer (dataset: Poi150_2nd_A.dat), Kawamura Laboratory at Tokyo University of Science, http://murasun.me.noda.tus.ac.jp/turbulence/.Google Scholar
Keating, A., Piomelli, U., Bremhorst, K. & Nešić, S. 2004 Large-eddy simulation of heat transfer downstream of a backward-facing step. J. Turbul. 5 (20), 127.CrossRefGoogle Scholar
Kim, J. & Moin, P. 1985 Application of a fractional-step method to incompressible Navier-Stokes equations. J. Comput. Phys. 59, 308323.CrossRefGoogle Scholar
Launder, B. E. 1988 On the computation of convective heat transfer in complex turbulent flows. Trans. ASME: J. Heat Transfer 110, 11121128.CrossRefGoogle Scholar
Lee, J. S., Xu, X. & Pletcher, R. H. 2004 Large eddy simulation of heated vertical annular pipe flow in fully developed turbulent mixed convection. Intl. J. Heat Mass Transfer. 47, 437446.CrossRefGoogle Scholar
Lilly, D. K. 1992 A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A 4, 633635.CrossRefGoogle Scholar
Lumley, J. L. 1970 Toward a turbulent constitutive relation. J. Fluid Mech. 41, 413434.CrossRefGoogle Scholar
Moin, P., Squires, K., Cabot, W. & Lee, S. 1991 A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys. Fluids A 3, 27462757.CrossRefGoogle Scholar
Pallares, J. & Davidson, L. 2002 Large-eddy simulations of turbulent heat transfer in stationary and rotating square ducts. Phys. Fluids 14, 28042816.CrossRefGoogle Scholar
Park, T. S., Sung, H. J. & Suzuki, K. 2003 Developemnt of a nonlinear near-wall turbulence model for turbulent flow and hear transfer. Intl. J. Heat Fluid Flow 24, 2940.CrossRefGoogle Scholar
Peng, S.-H. & Davidson, L. 2002 On a subgrid-scale heat flux model for large eddy simulation of turbulent thermal flow. Intl. J. Heat Mass Transfer 45, 13931405.CrossRefGoogle Scholar
Pope, S. B. 1975 A more general effective-viscosity hypothesis. J. Fluid Mech. 72, 331340.CrossRefGoogle Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Porté-Agel, F., Pahlow, M., Meneveau, C. & Parlange, M. B. 2001 a Atmospheric stability effect on subgrid-scale physics for large-eddy simulation. Adv. Water Resour. 24, 10851102.CrossRefGoogle Scholar
Porté-Agel, F., Parlange, M. B., Meneveau, C. & Eichinger, W. E. 2001 b A priori field study of the subgrid-scale heat fluxes and dissipation in the atmospheric surface layer. J. Atmos. Sci. 58, 26732698.2.0.CO;2>CrossRefGoogle Scholar
Pullin, D. I. 2000 A vortex-based model for the subgrid flux of a passive scalar. Phys. Fluids 12, 23112319.CrossRefGoogle Scholar
Reiner, M. 1945 A mathematical theory of dilatancy. Am. J. Maths. 67, 350362.CrossRefGoogle Scholar
Rhie, C. M. & Chow, W. L. 1983 Numerical study of the turbulent flow past an isolated airfoil with trailing edge separation. AIAA J. 21, 15251532.CrossRefGoogle Scholar
Rivlin, R. S. 1948 Large elastic deformations of isotropic materials. iv. further developments of the general theory. Phil. Trans. R. Soc. Lond. A 241, 379397.Google Scholar
Rodi, W. 1976 A new algebraic relation for calculating the Reynolds stresses. Z. Angew. Math. Mech. 56, T219T221.CrossRefGoogle Scholar
Rogers, M. M., Mansour, N. N. & Reynolds, W. C. 1989 An algebraic model for the turbulent flux of a passive scalar. J. Fluid Mech. 203, 77101.CrossRefGoogle Scholar
Sagaut, P. 2002 Large Eddy Simulation for Incompressible Flows: An Introduction, 2nd edn. Springer.CrossRefGoogle Scholar
Salvetti, M. V. & Banerjee, S. 1995 A priori tests of a new dynamic subgrid-scale model for finite-difference large-eddy simulations. Phys. Fluids 7, 28312847.CrossRefGoogle Scholar
So, R. M. C., Jin, L. H. & Gatski, T. B. 2004 An explicit algebraic Reynolds stress and heat flux model for incompressible turbulence: Part II bouyant flow. Theor. Comput. Fluid Dyn. 17, 377406.CrossRefGoogle Scholar
So, R. M. C. & Speziale, C. G. 1999 A review of turbulent heat transfer modeling. In Annual Review of Heat Transfer (ed. Tien, C. L.), vol. 10, chap. 5, pp. 177219. Begell House.Google Scholar
Spencer, A. J. M. 1971 Part III: Theory of invariants. In Continuum Physics, Volume I–Mathematics (ed. Eringen, A. C.). Academic.Google Scholar
Speziale, C. G. 1987 On nonlinear kl and k–ϵ models of turbulence. J. Fluid Mech. 178, 459475.CrossRefGoogle Scholar
Suga, K. & Abe, K. 2000 Nonlinear eddy viscosity modelling for turbulence and heat transfer near wall and shear-free boundaries. Intl. J. Heat Fluid Flow 21, 3748.CrossRefGoogle Scholar
Stolz, S., Adams, N. A. & Kleiser, L. 2001 The approximate deconvolution model for large-eddy simulations of compressible flows and its application to shock-turbulent-boundary-layer interaction. Phys. Fluids 13, 29853001.CrossRefGoogle Scholar
Tyagi, M. & Acharya, S. 2005 Large eddy simulations of flow and heat transfer in rotating ribbed duct flows. Trans. ASME: J. Heat Transfer. 127, 486498.CrossRefGoogle Scholar
Vreman, A. W. 2004 An eddy-viscosity subgrid-scale model for turbulent shear flows: Algebraic theory and applications. Phys. Fluids 16, 36703681.CrossRefGoogle Scholar
Wang, B.-C. & Bergstrom, D. J. 2005 A dynamic nonlinear subgrid-scale stress model. Phys. Fluids 17, 035109, 115.Google Scholar
Wang, B.-C., Bergstrom, D. J., Yin, J. & Yee, E. 2006 a Turbulence topologies predicted using large eddy simulations. J. Turbul. 7 (34), 128.CrossRefGoogle Scholar
Wang, B.-C., Yee, E. & Bergstrom, D. J. 2006 b Geometrical description of the subgrid-scale stress tensor based on Euler axis/angle. AIAA J. 44, 11061110.CrossRefGoogle Scholar
Wang, B.-C., Yee, E., Yin, J. & Bergstrom, D. J. 2007 a A general dynamic linear tensor-diffusivity subgrid-scale heat-flux model for large-eddy simulation of turbulent thermal flows. Numer. Heat Transfer. B 51, 205227.CrossRefGoogle Scholar
Wang, B.-C., Yin, J., Yee, E. & Bergstrom, D. J. 2007 b A complete and irreducible dynamic SGS heat-flux modelling based on the strain rate tensor for large-eddy simulation of thermal convection. Intl. J. Heat Fluid Flow 28, 12271243.CrossRefGoogle Scholar
Wang, B.-C., Yee, E. & Bergstrom, D. J. 2008 Geometrical properties of the vorticity vector derived using large-eddy simulation. Fluid Dyn. Res. 40, 123154.CrossRefGoogle Scholar
Wang, L. & Lu, X.-Y. 2004 An investigation of turbulent oscillatory heat transfer in channel flows by large eddy simulation. Intl. J. Heat Mass Trans. 47, 21612172.CrossRefGoogle Scholar
Wikström, P. M., Wallin, S. & Johansson, A. V. 2000 Derivation and investigation of a new explicit algebraic model for the passive scalar flux. Phys. Fluids 12, 688702.CrossRefGoogle Scholar
Winckelmans, G. S., Jeanmart, H. & Carati, D. 2002 On the comparison of turbulence intensities from large-eddy simulation with those from experiment or direct numerical simulation. Phys. Fluids 14, 18091811.CrossRefGoogle Scholar
Yoshizawa, A. 1988 Statistical modelling of passive-scalar diffusion in turbulent shear flows. J. Fluid Mech. 195, 541555.CrossRefGoogle Scholar
Younis, B. A., Speziale, C. G. & Clark, T. T. 2005 A rational model for the turbulent scalar fluxes. Proc. R. Soc. Lond. A 461, 575594.Google Scholar
Zheng, Q.-S. 1994 Theory of representations for tensor functions—a unified invariant approach to constitutive equations. Appl. Mech. Rev. 47, 545587.CrossRefGoogle Scholar