Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-18T18:37:57.695Z Has data issue: false hasContentIssue false

The neutral curve for stationary disturbances in rotating-disk flow

Published online by Cambridge University Press:  21 April 2006

Mujeeb R. Malik
Affiliation:
High Technology Corporation, P.O. Box 7262, Hampton, Virginia 23666

Abstract

The neutral curve for stationary vortex disturbances in rotating-disk flow is computed up to a Reynolds number of 107 using the sixth-order system of linear stability equations which includes the effects of streamline curvature and Coriolis force. It is found that the neutral curve has two minima: one at R = 285.36 (upper branch) and the other at R = 440.88 (lower branch). At large Reynolds numbers, the upper branch tends to Stuart's asymptotic solution while the lower branch tends to a solution that is associated with the wave angle corresponding to the direction of zero mean wall shear.

Type
Research Article
Copyright
© 1986 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brown, W. E. 1959 Northrop Report NAI-59–5.
Cebeci, T. & Stewartson, K. 1980 AIAA J. 18, 1485.
Cochran, W. G. 1934 Proc. Comb. Phil. Soc. 30, 365.
Fedorov, B. I., Plavnik, G. Z., Prokhorov, I. V. & Zhukhovitskii, L. G. 1976 J. Engng Phys. 31, 1448.
Gregory, N., Stuart, J. T. & Walker, W. S. 1955 Phil. Trans. R. Soc. Lond. A 248, 155.
Kármán, Th. von 1921 Z. angew. Math. Mech. 1, 232.
Kobayashi, R., Kohama, Y. & Takamadate, Ch. 1980 Acta Mechanica 35, 71.
Lentini, M. & Keller, H. B. 1980 S1AM J. Appl. Maths 38, 52.
Mack, L. 1985 AIAA paper No. 85–0490.
Malik, M. R., Chuang, S. & Httssaini, M. Y. 1982 Z. angew. Math. Phys. 33, 189.
Malik, M. R., Wilkinson, S. P. & Orszag, S. A. 1981 AIAA J. 19, 1131.
Wilkinson, S. P. & Malik, M. R. 1983 AIAA paper No. 83–1760. (Also AIAA J. 23 (1985), p. 588.)
Zandbergen, P. J. & Dijkstra, D. 1977 J. Engng Maths 11, 167.