Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-09T00:50:22.089Z Has data issue: false hasContentIssue false

The naturally oscillating flow emerging from a fluidic precessing jet nozzle

Published online by Cambridge University Press:  10 July 2008

CHONG Y. WONG
Affiliation:
School of Mechanical Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia
GRAHAM J. NATHAN
Affiliation:
School of Mechanical Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia
RICHARD M. KELSO
Affiliation:
School of Mechanical Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia

Abstract

Phase-averaged and directionally triggered digital particle image velocimetry measurements were taken in longitudinal and transverse planes in the near field of the flow emerging from a fluidic precessing jet nozzle. Measurements were performed at nozzle inlet Reynolds and Strouhal numbers of 59000 and 0.0017, respectively. Results indicate that the jet emerging from the nozzle departs with an azimuthal component in a direction opposite to that of the jet precession. In addition, the structure of the ‘flow convergence’ region, reported in an earlier study, is better resolved here. At least three unique vortex-pair regions containing smaller vortical ‘blobs’ are identified for the first time. These include a vortex-pair region originating from the foci on the downstream face of the nozzle centrebody, a vortex-pair region shed from the edge of the centrebody and a vortex-pair region originating from the downstream surface of the nozzle exit lip.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adrian, R. J. 1991 Particle-imaging techniques for experimental fluid mechanics. Annu. Rev. Fluid Mech. 23, 261304.CrossRefGoogle Scholar
Calvert, J. R. 1967 Experiments on the flow past an inclined disk. J. Fluid Mech. 29, 691703.CrossRefGoogle Scholar
Cantwell, B. & Coles, D. 1983 An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder. J. Fluid Mech. 136, 321374.CrossRefGoogle Scholar
Crow, S. C. & Champagne, F. H. 1971 Orderly structure in jet turbulence. J. Fluid Mech. 48, 547591.CrossRefGoogle Scholar
Fick, W., Griffiths, A. J. & O'Doherty, T. 1997 Visualisation of the precessing vortex core in an unconfined swirling flow. Opt. Diagnost. Engng 2, 1931.Google Scholar
Fric, T. F. & Roshko, A. 1994 Vortical structure in the wake of a transverse jet. J. Fluid Mech. 279, 147.CrossRefGoogle Scholar
Guo, B. Y., Langrish, T. A. G. & Fletcher, D. F. 2001 Numerical simulation of unsteady flow in axisymmetric sudden expansions. Trans. ASME I: J. Fluids Engng 123, 574587.Google Scholar
Hart, D. P. 2000 PIV error correction. Exps. Fluids 29, 1322.CrossRefGoogle Scholar
Hunt, J. C. R., Abell, C. J., Peterka, J. A. & Woo, H. 1978 Kinematical studies of the flows around free or surface mounted obstacles; applying topology to flow visualization. J. Fluid Mech. 86, 179200.CrossRefGoogle Scholar
Hussain, A. K. M. F. & Reynolds, W. C. 1972 The mechanics of an organized wave in turbulent shear flow. Part 2. Experimental results. J. Fluid Mech. 54, 241261.CrossRefGoogle Scholar
Kelso, R. M. 2001 A mechanism for jet precession in axisymmetric sudden expansions. In Proc. 14th Australasian Fluid Mech. Conf. (ed. Dally, B. B.), vol. 2, pp. 829–832. The University of Adelaide, Australia.Google Scholar
Kelso, R. M., Lim, T. T. & Perry, A. E. 1996 An experimental study of round jets in cross-flow. J. Fluid Mech. 306, 111144.CrossRefGoogle Scholar
Manias, C. G. & Nathan, G. J. 1994 Low NOx clinker production. World Cement 25 (5), 5456.Google Scholar
Mi, J. & Nathan, G. J. 2004 Self-excited jet precession Strouhal number and its influence on turbulent mixing characteristics. J. Fluids Struct. 19, 851862.CrossRefGoogle Scholar
Mi, J. & Nathan, G. J. 2005 Statistical analysis of the velocity field in a mechanical precessing jet flow. Phys. Fluids 17 (1), 015102.CrossRefGoogle Scholar
Mi, J., Nathan, G. J. & Wong, C.Y. 2006 The influence of inlet flow condition on the frequency of self-excited jet precession. J. Fluids Struct. 22, 129133.CrossRefGoogle Scholar
Nakamura, Y. & Fukamachi, N. 1991 Visualisation of flow past a frisbee. Fluid Dyn. Res. 7, 3135.CrossRefGoogle Scholar
Nathan, G. J. 1988 The enhanced mixing burner. PhD thesis, Department of Mechanical Engineering, University of Adelaide, Australia.Google Scholar
Nathan, G. J., Luxton, R. E. & Smart, J. P. 1992 Reduced NOx emissions and enhanced large scale turbulence from a precessing jet burner. In Proc. 24th Symp. on Combustion, pp. 1399–1405. The Combustion Institute.CrossRefGoogle Scholar
Nathan, G. J., Turns, S. R. & Bandaru, R. V. 1996 The influence of jet precession on NOx emissions and radiation from turbulent flame. Combust. Sci. Technol. 112, 221230.CrossRefGoogle Scholar
Nathan, G. J., Hill, S. J. & Luxton, R. E. 1998 An axisymmetric ‘fluidic’ nozzle to generate jet precession. J. Fluid Mech. 370, 347380.CrossRefGoogle Scholar
Nathan, G. J., Mi, J., Alwahabi, Z. T., Newbold, G. J. R. & Nobes, D. S. 2006 Impacts of a jet's exit flow pattern on mixing and combustion performance. Prog. Energy Combust. Sci. 32, 496538.CrossRefGoogle Scholar
Newbold, G. J. R. 1997 The mixing and combustion characteristics of a precessing jet nozzle. PhD thesis, Department of Mechanical Engineering, University of Adelaide, Australia.Google Scholar
Newbold, G. J. R., Nobes, D. S., Alwahabi, Z. T., Nathan, G. J. & Luxton, R. E. 1995 The application of PIV to the precessing jet nozzle. In Proc. 12th Australasian Fluid Mech. Conf. (ed. Bilger, R. W.), pp. 395–398. Sydney, Australia.Google Scholar
Newbold, G. J. R., Nathan, G. J. & Luxton, R. E. 1997 The large scale dynamic behaviour of an unconfined precessing jet flame. Combust. Sci. Technol. 126, 7195.CrossRefGoogle Scholar
Nobes, D. N., Newbold, G. J. R., Hasselbrink, E. F., Su, L., Mungal, M. G. & Nathan, G. J. 2002 PIV and PLIF measurements in precessing and round jets. Tech. Rep. Dept. Mech. Engng, University of Adelaide, Australia.Google Scholar
Parham, J. J., Nathan, G. J., Hill, S. J. & Mullinger, P. J. 2005 A modified Thring-Newby scaling criterion for confined, rapidly-spreading and unsteady jets. Combust. Sci. Technol. 177, 14211427.CrossRefGoogle Scholar
Perry, A. E. & Chong, M. S. 1987 A description of eddying motions and flow patterns using critical-point concepts. Annu. Rev. Fluid Mech. 19, 125155.CrossRefGoogle Scholar
Potts, J. R. & Crowther, W. J. 2000 Application of flow control to a disc-wing UAV. In Proc. 16th Bristol UAV Systems Conf. U.K.Google Scholar
Raffel, M., Willert, C. & Kompenhans, J. 1998 Particle Image Velocimetry – A Practical Guide. Springer.CrossRefGoogle Scholar
Rockwell, D. 2000 Imaging of unsteady separated flows: global interpretation with particle image velocimetry. Exps. Fluids (Suppl.) pp. S255–S273.CrossRefGoogle Scholar
Schneider, G. M., Nathan, G. J., Luxton, R. E., Hooper, J. D. & Musgrove, A. R. 1997 a Velocity and Reynolds stresses in a precessing jet flow. Exps. Fluids 22, 489495.CrossRefGoogle Scholar
Schneider, G. M., Froud, D., Syred, N. & Nathan, G. J. 1997 b Velocity measurements in a precessing jet flow using a three dimensional LDA system. Exps. Fluids 23, 8998.CrossRefGoogle Scholar
Smith, N. L., Megalos, N. P., Nathan, G. J. & Zhang, D. K. 1998 Precessing jet burners for stable and low NOx pulverised fuel flames – preliminary results from small scale trials. Fuel 77, 10131016.CrossRefGoogle Scholar
Steiner, T. R. & Perry, A. E. 1987 Large-scale vortex structures in turbulent wakes behind bluff bodies. Part 2. J. Fluid Mech. 173, 271298.CrossRefGoogle Scholar
Syred, N. 2006 A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems. Prog. Energy Combust. Sci. 32, 93161.CrossRefGoogle Scholar
Tobak, M. & Peake, D. J. 1979 Topology of two-dimensional and three-dimensional separated flows. In AIAA Paper 79–1480.CrossRefGoogle Scholar
Tobak, M. & Peake, D. J. 1982 Topology of three-dimensional separated flows. Annu. Rev. Fluid Mech. 14, 6185.CrossRefGoogle Scholar
Wang, K. C. 1997 Features of three-dimensional separation and separated flow structure. In Laminar Boundary Layers (ed. Schmitt, H.), vol. 11, pp. 133. Computational Mechanics.Google Scholar
Wernet, M. P. & Edwards, R.V. 1990 New space domain processing technique for pulsed laser velocimetry. Appl. Opt. 29, 32993417.CrossRefGoogle ScholarPubMed
Wong, C. Y., Nathan, G. J. & Kelso, R. M. 2002 Velocity measurements in the near-field of a fluidic precessing jet flow using PIV and LDA. In Proc. 3rd Australian Conf. on Laser Diagnostics in Fluid Mech. and Combustion, pp. 48–55. University of Queensland, Brisbane, Australia.Google Scholar
Wong, C. Y., Lanspeary, P. V., Nathan, G. J., Kelso, R. M. & O'Doherty, T. H. 2003 Phase averaged velocity in a fluidic precessing jet nozzle and in its near external field. J. Exps. Thermal Fluid Sci. 27, 515524.CrossRefGoogle Scholar
Wong, C. Y., Nathan, G. J. & O'Doherty, T. 2004 The effect of initial conditions on the exit flow from a fluidic precessing jet nozzle. Exps. Fluids 36, 7081.CrossRefGoogle Scholar
Zdravkovich, M. M., Flaherty, A. J., Pahle, M. G. & Skelhorne, I. A. 1998 Some aerodynamic aspects of coin-like cylinders. J. Fluid Mech. 360 7384.CrossRefGoogle Scholar