Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T16:45:22.636Z Has data issue: false hasContentIssue false

Natural convection in a long vertical cylinder under gravity modulation

Published online by Cambridge University Press:  21 April 2006

M. Wadih
Affiliation:
Institut de Mécanique des Fluides, UM 34 du CNRS, 1 rue Honnorat. 13003 Marseille, France
B. Roux
Affiliation:
Institut de Mécanique des Fluides, UM 34 du CNRS, 1 rue Honnorat. 13003 Marseille, France

Abstract

This study is devoted to the onset of convection in differentially heated cylinders under gravity modulation. It specifically concerns the case of a vertical cylinder of infinite length, when a negative temperature gradient is maintained in the upward direction. The effect of modulation on the stability limits given by linear theory in the standard steady case is analysed. A method based on Floquet theory is proposed in the case of small values of the modulation amplitude ε, for a fixed value of the frequency ω. A general technique, called matrix method, which can easily be adapted to various kinds of geometries and boundary conditions, has been developed. Analytical approaches have been derived in some cases. Finally, an asymptotic analysis is presented for large ω, under very general boundary conditions and periodic constraints, for finite ε. An asymptotic relation is established for the onset of convection under periodic gravity modulation for large ω values, when ε [Lt ] ω; the mathematical and physical foundations of this inequality are discussed.

Type
Research Article
Copyright
© 1988 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Billia, B., Jamgotchian, H., Favier, J. J. & Camel, D. 1987 E.S.A. Special Publication 256, 377.
Bird, R. B., Stewart, W. E. & Lightfoot, E. N. 1960 Transport Phenomena. Wiley.
Camel, D., Favier, J. J., Dupouy, M. D. & Le Maguet, R. 1987 E.S.A. Special Publication 256, 317.
Charlson, G. S. & Sani, R. L. 1970 Intl J. Heat Mass Transfer 13, 1479.
Charlson, G. S. & Sani, R. L. 1971 Intl J. Heat Mass Transfer 14, 2157.
Donnelly, R. J. 1964 Proc. Roy. Soc. Lond. A 281, 130
Gershuni, G. Z. & Zhukhovitskii, E. M. 1963 J. Appl. Math. Mech. (PMM) 27, 1197.
Gershuni, G. Z., Zhukhovitskii, E. M. & Iurkov, I. S. 1970 J. Appl. Math. Mech. (PMM) 34, 442.
Gresho, P. & Sani, R. L. 1970 J. Fluid Mech. 40, 783.
Grosch, C. E. & Salwen, H. 1968 J. Fluid Mech. 34, 177.
Hall, P. 1975 J. Fluid Mech. 67, 29.
Hamacher, H. & Merbold, U. 1985 AIAA paper 85-7026.
Hamacher, H., Merbold, U. & Jilg, R. 1986a 37th Intl Astronautical Congr. Innsbruck, Austria, paper IAF-86-268.
Hamacher, H., Merbold, U. & Jilg, R. 1986b 15th Intl Symp. Space Techn. and Science, Tokyo, paper S-1-3.
Henry, D. & Roux, B. 1987 E.S.A. Special Publication 256, 487.
Homsy, M. G. 1974 J. Fluid Mech. 62, 387.
Malméjac, Y., Bewersdorff, A., Da Riva, I. & Napolitano, L. G. 1981 E.S.A. BR-05.
Ostrach, S. 1976 E.S.A. Special Publication 114, 41.
Ostrach, S. 1982 Ann. Rev. Fluid Mech. 14, 313.
Ostroumov, G. A. 1952 Free Convection under the Conditions of the Internal Problems. Moscow, Tech. Theor. Litt. State Publishing House. (English translation NACA-TM (1958) 1407).
Pak, H. Y., Winter, E. R. F. & Schoenals, R. J. 1970 Trans A.S.M.E. 158.
Ralston, A. 1962 Runge-Kutta methods with minimum error bounds. Math. Comp. 16, 431.Google Scholar
Richardson, P. D. 1967 Appl. Mech. Rev. 20, 201.
Roppo, M. N., Davis, S. H. & Rosenblat, S. 1984 Phys. Fluids 27, 796.
Rosenblat, S. & Herbert, D. M. 1970 J. Fluid Mech. 43, 385.
Rosenblat, S. & Tanaka, G. A. 1971 Phys. Fluids 14, 1319.
Venezian, G. 1969 J. Fluid Mech. 35, 243.
Yih, C. S. 1959 Q. Appl. Maths 17, 25.
Yih, C. S. & Li, C. H. 1972 J. Fluid Mech. 54, 143.