Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-30T23:05:32.811Z Has data issue: false hasContentIssue false

Multiple bifurcations of the flow over stalled airfoils when changing the Reynolds number

Published online by Cambridge University Press:  04 May 2018

E. Rossi
Affiliation:
École Centrale Nantes, LHEEA research dept. (ECN and CNRS), Nantes, France
A. Colagrossi*
Affiliation:
École Centrale Nantes, LHEEA research dept. (ECN and CNRS), Nantes, France CNR-INSEAN, Via di Vallerano 139, 00128 Rome, Italy
G. Oger
Affiliation:
École Centrale Nantes, LHEEA research dept. (ECN and CNRS), Nantes, France
D. Le Touzé
Affiliation:
École Centrale Nantes, LHEEA research dept. (ECN and CNRS), Nantes, France
*
Email address for correspondence: [email protected]

Abstract

In the present study, the sudden changes of the flow field past stalled airfoils for small variations of the Reynolds number are investigated numerically. A vortex particle method has been used for the simulations in a two-dimensional framework. The most critical configurations found with this solver are verified through the comparison with the solution given by a mesh-based finite volume solver. The airfoils considered are the NACA0010 and a narrow ellipse with the same thickness. The angle of attack is fixed to $\unicode[STIX]{x1D6FC}=30^{\circ }$ for which complex dynamics of the flow can take place in the different viscous regimes inspected. The Reynolds number ranges between $Re=100$ and $Re=3000$ and, within this interval, numerous bifurcations of the solution are observed in terms of mean lift and drag coefficients, Strouhal number and downstream wake. An analysis of these bifurcations is provided and links are made between the wake structures observed. On this base the flow patterns can be classified in different modes similarly to the analysis by Kurtulus (Intl J. Micro Air Vehicles, vol. 7(3), 2015, pp. 301–326; vol. 8(2), 2016, pp. 109–139). A discussion of the vortical evolution of the flow in the vicinity of the suction side of the airfoil is also provided.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdessemed, N., Sherwin, S. J. & Theofilis, V. 2009 Linear instability analysis of low-pressure turbine flows. J. Fluid Mech. 628, 5783.Google Scholar
Alam, M. M., Zhou, Y., Yang, H. X., Guo, H. & Mi, J. 2010 The ultra-low Reynolds number airfoil wake. Exp. Fluids 48 (1), 81103.Google Scholar
Anand, K. & Sarkar, S. 2017 Features of a laminar separated boundary layer near the leading-edge of a model airfoil for different angles of attack: an experimental study. Trans. ASME J. Fluids Engng 139 (2), 021201.Google Scholar
Anyoji, M., Nonomura, T., Aono, H., Oyama, A., Fujii, K., Nagai, H. & Asai, K. 2014 Computational and experimental analysis of a high-performance airfoil under low-Reynolds-number flow condition. J. Aircraft 51 (6), 18641872.Google Scholar
Barba, L. A., Leonard, A. & Allen, C. B.2003 Numerical investigations on the accuracy of the vortex method with and without remeshing. AIAA Paper 2003-3426.CrossRefGoogle Scholar
Benson, M. G., Bellamy-Knights, P. G., Gerrard, J. H. & Gladwell, I. 1989 A viscous splitting algorithm applied to low Reynolds number flows round a circular cylinder. J. Fluids Struct. 3 (5), 439479.Google Scholar
Berger, M., Aftosmis, M. J. & Allmaras, S.2012 Progress towards a cartesian cut-cell method for viscous compressible flow. AIAA Paper 2012-1301.Google Scholar
Bigay, P., Oger, G., Guilcher, P.-M. & Touzé, D. L. 2017 A weakly-compressible Cartesian grid approach for hydrodynamic flows. Comput. Phys. Commun. 220 (Supplement C), 3143.Google Scholar
Chatelain, P., Curioni, A., Bergdorf, M., Rossinelli, D., Andreoni, W. & Koumoutsakos, P. 2008 Billion vortex particle direct numerical simulations of aircraft wakes. Comput. Meth. Appl. Mech. Engng 197 (13), 12961304.CrossRefGoogle Scholar
Chorin, A. 1973 Numerical study of slightly viscous flow. J. Fluid Mech. 57 (04), 785796.Google Scholar
Chorin, A. 1978 Vortex sheet approximation of boundary layers. J. Comput. Phys. 27 (3), 428442.Google Scholar
Colagrossi, A., Bouscasse, B., Antuono, M. & Marrone, S. 2012 Particle packing algorithm for SPH schemes. Comput. Phys. Commun. 183 (2), 16411683.Google Scholar
Colagrossi, A., Graziani, G. & Pulvirenti, M. 2014 Particles for fluids: SPH versus vortex methods. J. Math. Mech. Complex Syst. 2 (1), 4570.Google Scholar
Colagrossi, A., Rossi, E., Marrone, S. & Le Touzé, D. 2016 Particle methods for viscous flows: analogies and differences between the SPH and DVH methods. Commun. Comput. Phys. 20 (3), 660688.Google Scholar
Counsil, J. N. & Goni Boulama, K. 2013 Low-Reynolds-number aerodynamic performances of the NACA 0012 and Selig–Donovan 7003 airfoils. J. Aircraft 50 (1), 204216.Google Scholar
Durante, D., Rossi, E., Colagrossi, A. & Graziani, G. 2016 Numerical simulations of the transition from laminar to chaotic behaviour of the planar vortex flow past a circular cylinder. Commun. Nonlinear Sci. Numer. Simul. 48, 1838.Google Scholar
Galbraith, M. C. & Visbal, M. R.2009 Implicit large eddy simulation of low-Reynolds-number transitional flow past the sd7003 airfoil. PhD thesis, University of Cincinnati.Google Scholar
Gioria, R. S., He, W. & Theofilis, V. 2015 On global linear instability mechanisms of flow around airfoils at low Reynolds number and high angle of attack. Procedia IUTAM 14, 8895.Google Scholar
He, W., Gioria, R. S., Pérez, J. M. & Theofilis, V. 2017 Linear instability of low Reynolds number massively separated flow around three NACA airfoils. J. Fluid Mech. 811, 701741.Google Scholar
Hoarau, Y., Braza, M., Ventikos, Y. & Faghani, D. 2006 First stages of the transition to turbulence and control in the incompressible detached flow around a NACA0012 wing. Intl J. Heat Fluid Flow 27 (5), 878886.Google Scholar
Hoarau, Y., Braza, M., Ventikos, Y., Faghani, D. & Tzabiras, G. 2003 Organized modes and the three-dimensional transition to turbulence in the incompressible flow around a NACA0012 wing. J. Fluid Mech. 496, 6372.Google Scholar
Hu, H. & Yang, Z. 2008 An experimental study of the laminar flow separation on a low-Reynolds-number airfoil. Trans. ASME J. Fluids Engng 130 (5), 051101.Google Scholar
Huang, R. F. & Lin, C. L. 1995 Vortex shedding and shear-layer instability of wing at low-Reynolds numbers. AIAA J. 33 (8), 13981403.Google Scholar
Huang, R. F., Wu, J. Y., Jeng, J. H. & Chen, R. C. 2001 Surface flow and vortex shedding of an impulsively started wing. J. Fluid Mech. 441, 265292.Google Scholar
Jung, J., Yee, K., Misaka, T. & Jeong, S. 2017 Low Reynolds number airfoil design for a mars exploration airplane using a transition model. Trans. Japan Soc. Aeronaut. Space Sci. 60 (6), 333340.Google Scholar
Khalid, M. S. U. & Akhtar, I. 2012 Characteristics of flow past a symmetric airfoil at low Reynolds number: a nonlinear perspective. In ASME 2012 International Mechanical Engineering Congress & Exposition, pp. 167175. American Society of Mechanical Engineers.Google Scholar
Kojima, R., Nonomura, T., Oyama, A. & Fujii, K. 2013 Large-eddy simulation of low-Reynolds-number flow over thick and thin NACA airfoils. J. Aircraft 50 (1), 187196.CrossRefGoogle Scholar
Kunz, P. & Kroo, I.2000 Analysis, design, and testing of airfoils for use at ultra-low Reynolds numbers. Conference Paper, Conference on Fixed and Flapping Flight at Low Reynolds Numbers, 5–7 June, University of Notre Dame, IN, pp. 349–372.Google Scholar
Kurtulus, D. F. 2015 On the unsteady behavior of the flow around NACA 0012 airfoil with steady external conditions at ℜ = 1000. Intl J. Micro Air Vehicles 7 (3), 301326.Google Scholar
Kurtulus, D. F. 2016 On the wake pattern of symmetric airfoils for different incidence angles at ℜ = 1000. Intl J. Micro Air Vehicles 8 (2), 109139.Google Scholar
Lee, D., Nonomura, T., Oyama, A. & Fujii, K. 2015 Validation of numerical analysis to estimate airfoil aerodynamic characteristics at low Reynolds number region. In ASME/JSME/KSME 2015 Joint Fluids Engineering Conference, pp. V01AT13A005V01AT13A005. American Society of Mechanical Engineers.Google Scholar
Lee, D., Nonomura, T., Oyama, A. & Fujii, K. 2017 Comparative studies of numerical methods for evaluating aerodynamic characteristics of two-dimensional airfoil at low Reynolds numbers. Intl J. Comput. Fluid Dyn. 31 (1), 5767.Google Scholar
Lissaman, P. B. S. 1983 Low-Reynolds-number airfoils. Annu. Rev. Fluid Mech. 15 (1), 223239.Google Scholar
Liu, Y., Li, K., Zhang, J., Wang, H. & Liu, L. 2012 Numerical bifurcation analysis of static stall of airfoil and dynamic stall under unsteady perturbation. Commun. Nonlinear Sci. Numer. Simul. 17 (8), 34273434.Google Scholar
Liu, X.-D., Osher, S. & Chan, T. 1994 Weighted essentially non-oscillatory schemes iii. J. Comput. Phys. 115, 200212.Google Scholar
Mateescu, D. & Abdo, M. 2010 Analysis of flows past airfoils at very low Reynolds numbers. Proc. Inst. Mech. Engrs 224 (7), 757775.Google Scholar
Mesnard, O. & Barba, L. A.2016 Reproducible and replicable CFD: it’s harder than you think. Preprint, arXiv:1605.04339.Google Scholar
Mueller, T. J. & Delaurier, J. D. 2003 Aerodynamics of small vehicles. Annu. Rev. Fluid Mech. 35 (1), 89111.Google Scholar
Oger, G., Marrone, S., Touzé, D. L. & de Leffe, M. 2016 SPH accuracy improvement through the combination of a quasi-Lagrangian shifting transport velocity and consistent ALE formalisms. J. Comput. Phys. 313, 7698.Google Scholar
Pulliam, T. H. & Vastano, J. A. 1993 Transition to chaos in an open unforced 2D flow. J. Comput. Phys. 105 (1), 133149.Google Scholar
Rodríguez, D. & Theofilis, V. 2011 On the birth of stall cells on airfoils. Theor. Comput. Fluid Dyn. 25 (1), 105117.Google Scholar
Rossi, E., Colagrossi, A., Bouscasse, B. & Graziani, G. 2015a The diffused vortex hydrodynamics method. Commun. Comput. Phys. 18 (2), 351379.Google Scholar
Rossi, E., Colagrossi, A., Durante, D. & Graziani, G. 2016 Simulating 2D viscous flow around geometries with vertices through the diffused vortex hydrodynamics method. Comput. Meth. Appl. Mech. Engng.Google Scholar
Rossi, E., Colagrossi, A. & Graziani, G. 2015b Numerical simulation of 2D-vorticity dynamics using particle methods. Comput. Math. Appl. 69 (12), 14841503.Google Scholar
Sun, P. N., Colagrossi, A., Marrone, S., Antuono, A. & Zhang, A. M. 2018 Multi-resolution Delta-plus-SPH with tensile instability control: towards high Reynolds number flows. Comput. Phys. Commun. 224, 6380.Google Scholar
Sun, P. N., Colagrossi, A., Marrone, S. & Zhang, A. M. 2017 The 𝛿-plus-SPH model: simple procedures for a further improvement of the SPH scheme. Comput. Meth. Appl. Mech. Engng 315 (Supplement C), 2549.Google Scholar
Titarev, V. A. & Toro, E. F. 2004 Finite-volume WENO schemes for three dimensional conservation laws. J. Comput. Phys. 201, 238260.Google Scholar
Uranga, A., Persson, P.-O., Drela, M. & Peraire, J. 2011 Implicit large eddy simulation of transition to turbulence at low Reynolds numbers using a discontinuous Galerkin method. Intl J. Numer. Meth. Engng 87 (1–5), 232261.CrossRefGoogle Scholar
Zdravkovich, M. M. 1997 Flow around circular cylinders. Fundamentals 1.Google Scholar

Rossi et al. supplementary movie

Wakes shedding downstream a NACA0010 profile with angle of attack 30 degrees for Re numbers equal to Re=900.

Download Rossi et al. supplementary movie(Video)
Video 90.3 MB