Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Meneveau, Charles
1991.
Analysis of turbulence in the orthonormal wavelet representation.
Journal of Fluid Mechanics,
Vol. 232,
Issue. -1,
p.
469.
Meneveau, C.
and
Poinsot, T.
1991.
Stretching and quenching of flamelets in premixed turbulent combustion.
Combustion and Flame,
Vol. 86,
Issue. 4,
p.
311.
Muzy, J. F.
Bacry, E.
and
Arneodo, A.
1991.
Wavelets and multifractal formalism for singular signals: Application to turbulence data.
Physical Review Letters,
Vol. 67,
Issue. 25,
p.
3515.
Dowling, David R.
1991.
The estimated scalar dissipation rate in gas-phase turbulent jets.
Physics of Fluids A: Fluid Dynamics,
Vol. 3,
Issue. 9,
p.
2229.
1991.
On local isotropy of passive scalars in turbulent shear flows.
Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences,
Vol. 434,
Issue. 1890,
p.
165.
Benzi, R.
Biferale, L.
Paladin, G.
Vulpiani, A.
and
Vergassola, M.
1991.
Multifractality in the statistics of the velocity gradients in turbulence.
Physical Review Letters,
Vol. 67,
Issue. 17,
p.
2299.
Kailasnath, P.
Sreenivasan, K. R.
and
Stolovitzky, G.
1992.
Probability density of velocity increments in turbulent flows.
Physical Review Letters,
Vol. 68,
Issue. 18,
p.
2766.
Muzzio, F. J.
Meneveau, C.
Swanson, P. D.
and
Ottino, J. M.
1992.
Scaling and multifractal properties of mixing in chaotic flows.
Physics of Fluids A: Fluid Dynamics,
Vol. 4,
Issue. 7,
p.
1439.
Chhabra, Ashvin B.
and
Sreenivasan, K. R.
1992.
Scale-invariant multiplier distributions in turbulence.
Physical Review Letters,
Vol. 68,
Issue. 18,
p.
2762.
Stolovitzky, G.
Kailasnath, P.
and
Sreenivasan, K. R.
1992.
Kolmogorov’s refined similarity hypotheses.
Physical Review Letters,
Vol. 69,
Issue. 8,
p.
1178.
Borgas, M. S.
1992.
A comparison of intermittency models in turbulence.
Physics of Fluids A: Fluid Dynamics,
Vol. 4,
Issue. 9,
p.
2055.
Grossmann, Siegfried
and
Lohse, Detlef
1992.
Intermittency in the Navier-Stokes dynamics.
Zeitschrift f�r Physik B Condensed Matter,
Vol. 89,
Issue. 1,
p.
11.
Bershadskii, A.
and
Tsinober, A.
1992.
Asymptotic fractal and multifractal properties of turbulent dissipative fields.
Physics Letters A,
Vol. 165,
Issue. 1,
p.
37.
Schmitt, F.
La Vallée, D.
Schertzer, D.
and
Lovejoy, S.
1992.
Empirical determination of universal multifractal exponents in turbulent velocity fields.
Physical Review Letters,
Vol. 68,
Issue. 3,
p.
305.
Ottino, J. M.
Muzzio, F. J.
Tjahjadi, M.
Franjione, J. G.
Jana, S. C.
and
Kusch, H. A.
1992.
Chaos, Symmetry, and Self-Similarity: Exploiting Order and Disorder in Mixing Processes.
Science,
Vol. 257,
Issue. 5071,
p.
754.
Nelkin, Mark
1992.
In What Sense Is Turbulence an Unsolved Problem?.
Science,
Vol. 255,
Issue. 5044,
p.
566.
Eggers, Jens
1992.
Intermittency in dynamical models of turbulence.
Physical Review A,
Vol. 46,
Issue. 4,
p.
1951.
Burlaga, L. F.
1992.
Multifractal structure of the magnetic field and plasma in recurrent streams at 1 AU.
Journal of Geophysical Research: Space Physics,
Vol. 97,
Issue. A4,
p.
4283.
Ott, Edward
Du, Yunson
Sreenivasan, K. R.
Juneja, A.
and
Suri, A. K.
1992.
Sign-singular measures: Fast magnetic dynamos, and high-Reynolds-number fluid turbulence.
Physical Review Letters,
Vol. 69,
Issue. 18,
p.
2654.
Muzy, J. F.
Bacry, E.
and
Arneodo, A.
1993.
Multifractal formalism for fractal signals: The structure-function approach versus the wavelet-transform modulus-maxima method.
Physical Review E,
Vol. 47,
Issue. 2,
p.
875.