Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-15T23:25:06.120Z Has data issue: false hasContentIssue false

Motion of red blood cells near microvessel walls: effects of a porous wall layer

Published online by Cambridge University Press:  12 April 2012

Daniel S. Hariprasad
Affiliation:
Program in Applied Mathematics, University of Arizona, Tucson, AZ 85721, USA
Timothy W. Secomb*
Affiliation:
Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
*
Email address for correspondence: [email protected]

Abstract

A two-dimensional model is used to simulate the motion and deformation of a single mammalian red blood cell (RBC) flowing close to the wall of a microvessel, taking into account the effects of a porous endothelial surface layer (ESL) lining the vessel wall. Migration of RBCs away from the wall leads to the formation of a cell-depleted layer near the wall, which has a large effect on the resistance to blood flow in microvessels. The objective is to examine the mechanical factors causing this migration, including the effects of the ESL. The vessel is represented as a straight parallel-sided channel. The RBC is represented as a set of interconnected viscoelastic elements, suspended in plasma, a Newtonian fluid. The ESL is represented as a porous medium, and plasma flow in the layer is computed using the Brinkman approximation. It is shown that an initially circular cell positioned close to the ESL in a shear flow is deformed into an asymmetric shape. This breaking of symmetry leads to migration away from the wall. With increasing hydraulic resistivity of the layer, the rate of lateral migration increases. It is concluded that mechanical interactions of RBCs flowing in microvessels with a porous wall layer may reduce the rate of lateral migration and hence reduce the width of the cell-depleted zone external to the ESL, relative to the cell-depleted zone that would be formed if the interface between the ESL and free-flowing plasma were replaced by an impermeable boundary.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Barber, J. O., Alberding, J. P., Restrepo, J. M. & Secomb, T. W. 2008 Simulated two-dimensional red blood cell motion, deformation, and partitioning in microvessel bifurcations. Ann. Biomed. Engng 36, 16901698.CrossRefGoogle ScholarPubMed
2. Beaucourt, J., Biben, T. & Misbah, C. 2004 Optimal lift force on vesicles near a compressible substrate. Europhys. Lett. 67, 676682.Google Scholar
3. Brinkman, H. C. 1947 A Calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A 1, 2734.Google Scholar
4. Cameron, A. 1966 The Principles of Lubrication. Wiley.Google Scholar
5. Cantat, I. & Misbah, C. 1999 Lift force and dynamical unbinding of adhering vesicles under shear flow. Phys. Rev. Lett. 83, 880883.Google Scholar
6. Coupier, G., Kaoui, B., Podgorski, T. & Misbah, C. 2008 Noninertial lateral migration of vesicles in bounded Poiseuille flow. Phys. Fluids 20.Google Scholar
7. Doddi, S. K. & Bagchi, P. 2009 Three-dimensional computational modeling of multiple deformable cells flowing in microvessels. Phys. Rev. E 79, 046318.Google Scholar
8. Dupin, M. M., Halliday, I., Care, C. M., Alboul, L. & Munn, L. L. 2007 Modeling the flow of dense suspensions of deformable particles in three dimensions. Phys. Rev. E 75, 066707.CrossRefGoogle ScholarPubMed
9. Evans, E. A. 1983 Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipet aspiration tests. Biophys. J. 43, 2730.Google Scholar
10. Fåhraeus, R. & Lindqvist, T. 1931 The viscosity of the blood in narrow capillary tubes. Am. J. Physiol. 96, 562568.Google Scholar
11. Fedosov, D. A., Caswell, B., Popel, A. S. & Karniadakis, G. E. 2010 Blood flow and cell-free layer in microvessels. Microcirculation 17, 615628.Google Scholar
12. Fischer, T. M. 1980 On the energy dissipation in a tank-treading human red blood cell. Biophys. J. 32, 863868.Google Scholar
13. Fischer, T. M. 2004 Shape memory of human red blood cells. Biophys. J. 86, 33043313.CrossRefGoogle ScholarPubMed
14. Fischer, T. M., Stohr, M. & Schmid-Schönbein, H. 1978 Red blood cell (rbc) microrheology: Comparison of the behaviour of single rbc and liquid droplets in shear flow. In Biorheology (ed. Huang, C.-R. & Copley, A. L. ). AIChE Symposium Series No. 182, vol. 74 , pp. 3845. American Institute of Chemical Engineers.Google Scholar
15. Freund, J. B. 2007 Leukocyte margination in a model microvessel. Phys. Fluids 19, 023301.Google Scholar
16. Goldsmith, H. L. 1971 Red cell motions and wall interactions in tube flow. Fed. Proc. 30, 15781590.Google Scholar
17. Hochmuth, R. M. & Waugh, R. E. 1987 Erythrocyte membrane elasticity and viscosity. Annu. Rev. Physiol 49, 209219.CrossRefGoogle ScholarPubMed
18. Hsu, R. & Secomb, T. W. 1989 Motion of nonaxisymmetric red blood cells in cylindrical capillaries. Trans. ASME: J. Biomech. Engng 111, 147151.Google Scholar
19. Kaoui, B., Biros, G. & Misbah, C. 2009 Why do red blood cells have asymmetric shapes even in a symmetric flow? Phys. Rev. Lett. 103, 188101.Google Scholar
20. Kaoui, B., Ristow, G. H., Cantat, I., Misbah, C. & Zimmermann, W. 2008 Lateral migration of a two-dimensional vesicle in unbounded Poiseuille flow. Phys. Rev. E 77, 111702.Google Scholar
21. Leighton, D. & Acrivos, A. 1987 The shear-induced migration of particles in concentrated suspensions. J. Fluid Mech. 181, 415439.Google Scholar
22. Maeda, N., Suzuki, Y., Tanaka, S. & Tateishi, N. 1996 Erythrocyte flow and elasticity of microvessels evaluated by marginal cell-free layer and flow resistance. Am. J. Physiol. Heart Circ. Physiol. 271, H2454H2461.CrossRefGoogle ScholarPubMed
23. McWhirter, J. L., Noguchi, H. & Gompper, G. 2009 Flow-induced clustering and alignment of vesicles and red blood cells in microcapillaries. Proc. Natl Acad. Sci. USA 106, 60396043.Google Scholar
24. Olla, P. 1997 The role of tank-treading motions in the transverse migration of a spheroidal vesicle in a shear flow. J. Phys. A: Math. Gen. 30, 317329.Google Scholar
25. Pan, W. X., Caswell, B. & Karniadakis, G. E. 2010 A low-dimensional model for the red blood cell. Soft Matt. 6, 43664376.Google Scholar
26. Pivkin, I. V. & Karniadakis, G. E. 2008 Accurate coarse-grained modeling of red blood cells. Phys. Rev. Lett. 101, 118105.Google Scholar
27. Poiseuille, J. L. M. 1835 Recherches sur les causes du mouvement du sang dans les vaisseaux capillaires. C. R. Acad. Sci. 6, 554560.Google Scholar
28. Poiseuille, J. L. M. 1846 Recherches expérimentales sur le mouvement des liquides dans les tubes de très-petits diamêtres. Mém. Preséntés par Divers Savants Acad. Sci. Inst. Fr. IX, 433544.Google Scholar
29. Pozrikidis, C. 2005 Numerical simulation of cell motion in tube flow. Ann. Biomed. Engng 33, 165178.Google Scholar
30. Pries, A. R., Neuhaus, D. & Gaehtgens, P. 1992 Blood viscosity in tube flow: dependence on diameter and hematocrit. Am. J. Physiol. 263, H1770H1778.Google Scholar
31. Pries, A. R. & Secomb, T. W. 2008 Modeling structural adaptation of microcirculation. Microcirculation 15, 753764.CrossRefGoogle ScholarPubMed
32. Pries, A. R., Secomb, T. W. & Gaehtgens, P. 1996 Biophysical aspects of blood flow in the microvasculature. Cardiovasc. Res. 32, 654667.CrossRefGoogle ScholarPubMed
33. Pries, A. R., Secomb, T. W. & Gaehtgens, P. 2000 The endothelial surface layer. Pflugers Arch. 440, 653666.Google Scholar
34. Pries, A. R., Secomb, T. W., Gessner, T., Sperandio, M. B., Gross, J. F. & Gaehtgens, P. 1994 Resistance to blood flow in microvessels in vivo. Circulat. Res. 75, 904915.Google Scholar
35. Pries, A. R., Secomb, T. W., Sperandio, M. & Gaehtgens, P. 1998 Blood flow resistance during hemodilution: effect of plasma composition. Cardiovasc. Res. 37, 225235.CrossRefGoogle ScholarPubMed
36. Secomb, T. W. 1995 Mechanics of blood flow in the microcirculation. Symp. Soc. Exp. Biol. 49, 305321.Google Scholar
37. Secomb, T. W. 2003 Mechanics of red blood cells and blood flow in narrow tubes. In Hydrodynamics of Capsules and Cells (ed. Pozrikidis, C. ), pp. 163196. Chapman & Hall/CRC.Google Scholar
38. Secomb, T. W. 2010 Mechanics and computational simulation of blood flow in microvessels. Med. Engng Phys., 33, 800804.Google Scholar
39. Secomb, T. W. & Hsu, R. 1993 Non-axisymmetrical motion of rigid closely fitting particles in fluid-filled tubes. J. Fluid Mech. 257, 403420.Google Scholar
40. Secomb, T. W., Hsu, R. & Pries, A. R. 1998 A model for red blood cell motion in glycocalyx-lined capillaries. Am. J. Physiol. 274, H1016H1022.Google Scholar
41. Secomb, T. W., Hsu, R. & Pries, A. R. 2001 Effect of the endothelial surface layer on transmission of fluid shear stress to endothelial cells. Biorheology 38, 143150.Google Scholar
42. Secomb, T. W., Hsu, R. & Pries, A. R. 2002 Blood flow and red blood cell deformation in nonuniform capillaries: effects of the endothelial surface layer. Microcirculation 9, 189196.Google Scholar
43. Secomb, T. W. & Skalak, R. 1982 A two-dimensional model for capillary flow of an asymmetric cell. Microvasc. Res. 24, 194203.Google Scholar
44. Secomb, T. W., Skalak, R., Özkaya, N. & Gross, J. F. 1986 Flow of axisymmetric red blood cells in narrow capillaries. J. Fluid Mech. 163, 405423.Google Scholar
45. Secomb, T. W., Styp-Rekowska, B. & Pries, A. R. 2007 Two-dimensional simulation of red blood cell deformation and lateral migration in microvessels. Ann. Biomed. Engng 35, 755765.Google Scholar
46. Seifert, U. 1999 Hydrodynamic lift on bound vesicles. Phys. Rev. Lett. 83, 876879.CrossRefGoogle Scholar
47. Skotheim, J. M. & Mahadevan, L. 2005 Soft lubrication: the elastohydrodynamics of nonconforming and conforming contacts. Phys. Fluids 17, 092101.Google Scholar
48. Sukumaran, S. & Seifert, U. 2001 Influence of shear flow on vesicles near a wall: a numerical study. Phys. Rev. E 64.Google Scholar
49. Vand, V. 1948 Viscosity of solutions and suspensions. I. Theory. J. Phys. Colloid Chem. 52, 277299.Google Scholar
Supplementary material: PDF

Hariprasad and Secomb supplementary captions

Captions for movies 1-4

Download Hariprasad and Secomb supplementary captions(PDF)
PDF 127.9 KB

Hariprasad and Secomb supplementary movie

See pdf file for caption

Download Hariprasad and Secomb supplementary movie(Video)
Video 651.9 KB

Hariprasad and Secomb supplementary movie

See pdf file for caption

Download Hariprasad and Secomb supplementary movie(Video)
Video 5.9 MB

Hariprasad and Secomb supplementary movie

See pdf file for caption

Download Hariprasad and Secomb supplementary movie(Video)
Video 622.6 KB

Hariprasad and Secomb supplementary movie

See pdf file for caption

Download Hariprasad and Secomb supplementary movie(Video)
Video 6.8 MB

Hariprasad and Secomb supplementary movie

See pdf file for caption

Download Hariprasad and Secomb supplementary movie(Video)
Video 611.1 KB

Hariprasad and Secomb supplementary movie

See pdf file for caption

Download Hariprasad and Secomb supplementary movie(Video)
Video 6.7 MB

Hariprasad and Secomb supplementary movie

See pdf file for caption

Download Hariprasad and Secomb supplementary movie(Video)
Video 620.2 KB

Hariprasad and Secomb supplementary movie

See pdf file for caption

Download Hariprasad and Secomb supplementary movie(Video)
Video 6.1 MB