Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T14:52:34.205Z Has data issue: false hasContentIssue false

Motion and coalescence of sessile drops driven by substrate wetting gradient and external flow

Published online by Cambridge University Press:  01 April 2014

Majid Ahmadlouydarab
Affiliation:
Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
James J. Feng*
Affiliation:
Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
*
Email address for correspondence: [email protected]

Abstract

We report two-dimensional simulations of drop dynamics on a substrate subject to a wetting gradient and an external pressure gradient along the substrate. A phase-field formulation is used to represent the drop interface, and the moving contact line is modelled by Cahn–Hilliard diffusion. The Navier–Stokes–Cahn–Hilliard equations are solved by finite elements on an adaptively refined unstructured grid. For a single drop and a pair of drops, we consider three scenarios of drop motion driven by the wetting gradient only, by the external flow only, and by a combination of the two. Both the capillary force and the hydrodynamic drag depend strongly on the shape of the drop. Since the drop adapts its shape to the local wetting angles and to the external flow on a finite time scale, hysteresis is a prominent feature of the drop dynamics under opposing forces. For each wetting gradient, there is a narrow range of the magnitude of the external flow within which a single drop can achieve a stationary state. The equilibrium drop shape and position depend on its initial shape and the history of forcing. For a pair of drops, the wetting gradient or external flow alone tends to produce catch-up and coalescence. The flow-driven coalescence arises from a viscous shielding effect that relies on the asymmetric shape of the trailing drop once it is deformed by flow. This mechanism operates at zero Reynolds number, but is much enhanced by inertia. With the two forces opposing each other, the external flow favours separation while the wetting gradient favours coalescence. The outcome depends on their competition.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmadlouydarab, M., Liu, Z.-S. & Feng, J. J. 2011 Interfacial flows in corrugated microchannels: flow regims, transitions and hysteresis. Intl J. Multiphase Flow 37, 12661276.CrossRefGoogle Scholar
Brochard, F. 1989 Motions of droplets on the solid surfaces induced by chemical or thermal gradients. Langmuir 5, 432438.Google Scholar
Chaudhury, M. K. & Whitesides, G. M. 1992 How to make water run uphill. Science 256, 15391541.Google Scholar
Cox, R. G. 1986 The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. J. Fluid Mech. 168, 169194.Google Scholar
Daniel, S., Sircar, S., Gliem, J. & Chaudhury, M. K. 2004 Ratcheting motion of liquid drops on gradient surfaces. Langmuir 20, 40854092.Google Scholar
Dimitrakopoulos, P. & Higdon, J. J. L. 2001 On the displacement of three-dimensional fluid droplets adhering to a plane wall in viscous pressure-driven flows. J. Fluid Mech. 435, 327350.Google Scholar
Ding, H., Gilani, M. N. H. & Spelt, P. D. M. 2010 Sliding, pinch-off and detachment of a droplet on a wall in shear flow. J. Fluid Mech. 644, 217244.Google Scholar
Dupont, J.-B. & Legendre, D. 2010 Numerical simulation of static and sliding drop with contact angle hysteresis. J. Comput. Phys. 229, 24532478.Google Scholar
Feng, J. Q. & Basaran, O. A. 1994 Shear flow over a translationally symmetric cylindrical bubble pinned on a slot in a plane wall. J. Fluid Mech. 275, 351378.Google Scholar
Feng, J., Hu, H. H. & Joseph, D. D. 1994 Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 1. Sedimentation. J. Fluid Mech. 261, 95134.Google Scholar
Fermigier, M. & Jenffer, P. 1991 An experimental investigation of the dynamic contact angle in liquid–liquid systems. J. Colloid Interface Sci. 146, 226241.Google Scholar
Gao, P. & Feng, J. J. 2011a A numerical investigation of the propulsion of water walkers. J. Fluid Mech. 668, 363383.Google Scholar
Gao, P. & Feng, J. J. 2011b Spreading and breakup of a compound drop on a partially wetting substrate. J. Fluid Mech. 682, 415433.Google Scholar
Greenspan, H. P. 1978 On the motion of a small viscous droplet that wets a surface. J. Fluid Mech. 84, 125143.CrossRefGoogle Scholar
Gurau, V. & Mann, J. A. Jr. 2009 A critical overview of computational fluid dynamics multiphase models for proton exchange membrane fuel cells. SIAM J. Appl. Maths 70, 410454.Google Scholar
Herde, D., Thiele, U., Herminghaus, S. & Brinkmann, M. 2012 Driven large contact angle droplets on chemically heterogeneous substrates. Europhys. Lett. 100, 16002.Google Scholar
Hernández-Sánchez, J. F., Lubbers, L. A., Eddi, A. & Snoeijer, J. H. 2012 Symmetric and asymmetric coalescence of drops on a substrate. Phys. Rev. Lett. 109, 184502.Google Scholar
Ito, Y., Heydari, M., Hashimoto, A., Konno, T., Hirasawa, A., Hori, S., Kurita, K. & Nakajima, A. 2007 The movement of a water droplet on a gradient surface prepared by photodegradiation. Langmuir 23, 18451850.Google Scholar
Kang, Q., Zhang, D. & Chen, S. 2005 Displacement of a three-dimensional immiscible droplet in a duct. J. Fluid Mech. 545, 4166.Google Scholar
Karpitschka, S. & Riegler, H. 2012 Non-coalescence of sessile drops from different but miscible liquids: hydrodynamic analysis of the twin drop contour as a self-stabilizing traveling wave. Phys. Rev. Lett. 109, 066103.Google Scholar
Koido, T., Furusawa, T. & Moriyama, K. 2008 An approach to modeling two-phase transport in the gas diffusion layer of a proton exchange membrane fuel cell. J. Power Sources 175, 127136.Google Scholar
Lai, Y.-H., Hsu, M.-H. & Yang, J.-T. 2010 Enhanced mixing of droplets during coalescence on a surface with a wettability gradient. Lab on a Chip 10, 31493156.Google Scholar
Magaletti, F., Picano, F., Chinappi, M., Marino, L. & Casciola, C. M. 2013 The sharp-interface limit of the Cahn–Hilliard/Navier–Stokes model for binary fluids. J. Fluid Mech. 714, 95126.Google Scholar
Mehrabian, H. & Feng, J. J. 2011 Wicking flow through microchannels. Phys. Fluids 23, 122108.Google Scholar
Mognetti, B. M., Kusumaatmaja, H. & Yeomans, J. M. 2010 Drop dynamics on hydrophobic and superhydrophobic surfaces. Faraday Discuss. 146, 153165.Google Scholar
Moumen, N., Subramanian, R. S. & McLaughlin, J. B. 2006 Experiments on the motion of drops on a horizontal solid surface due to a wettability gradient. Langmuir 22, 26822690.Google Scholar
Nam, J.-H., Lee, K.-J., Hwang, G.-S., Kim, C.-J. & Kaviany, M. 2009 Microporous layer for water morphology control in PEMFC. Intl J. Heat Mass Transfer 52, 27792791.Google Scholar
Narhe, R. D., Beysens, D. A. & Pomeau, Y. 2008 Dynamic drying in the early-stage coalescence of droplets sitting on a plate. Europhys. Lett. 81, 46002.Google Scholar
Olapade, P. O., Singh, R. K. & Sarkar, K. 2009 Pairwise interactions between deformable drops in free shear at finite inertia. Phys. Fluids 21, 063302.Google Scholar
Ristenpart, W. D., McCalla, P. M., Roy, R. V. & Stone, H. A. 2006 Coalescence of spreading droplets on a wettable substrate. Phys. Rev. Lett. 97, 064501.Google Scholar
Schleizer, A. D. & Bonnecaze, R. T. 1999 Displacement of a two-dimensional immiscible droplet adhering to a wall in shear and pressure-driven flows. J. Fluid Mech. 383, 2954.Google Scholar
Sibley, D. N., Nold, A. & Kalliadasis, S. 2013a Unifying binary fluid diffuse-interface models in the sharp-interface limit. J. Fluid Mech. 736, 543.Google Scholar
Sibley, D. N., Nold, A., Savva, N. & Kalliadasis, S. 2013b The contact line behaviour of solid–liquid–gas diffuse-interface models. Phys. Fluids 25, 092111.Google Scholar
Subramanian, R. S., Moumen, N. & McLaughlin, J. B. 2005 Motion of a drop on a solid surface due to a wettability gradient. Langmuir 21, 1184411849.Google Scholar
Sugiyama, K. & Sbragaglia, M. 2008 Linear shear flow past a hemispherical droplet adhering to a solid surface. J. Engng Maths 62, 3550.Google Scholar
Wang, C.-Y. 2004 Fundamental models for fuel cell engineering. Chem. Rev. 104, 47274766.Google Scholar
Wang, H., Liao, Q., Zhu, X., Li, J. & Tian, X. 2010 Experimental studies of liquid droplet coalescence on the gradient surface. J. Supercond. Nov. Magn. 23, 11651168.Google Scholar
Wang, X.-P. & Wang, Y.-G. 2007 The sharp interface limit of a phase field model for moving contact line problem. Meth. Appl. Anal. 14, 287294.Google Scholar
Xu, X. & Qian, T. 2012 Droplet motion in one-component fluids on solid substrates with wettability gradients. Phys. Rev. E 85, 051601.Google Scholar
Yue, P. & Feng, J. J. 2011a Can diffuse-interface models quantitatively describe moving contact lines?. Eur. Phys. J., Spec. Top. 197, 3746.Google Scholar
Yue, P. & Feng, J. J. 2011b Wall energy relaxation in the Cahn–Hilliard model for moving contact lines. Phys. Fluids 23, 012106.Google Scholar
Yue, P., Feng, J. J., Liu, C. & Shen, J. 2004 A diffuse-interface method for simulating two-phase flows of complex fluids. J. Fluid Mech. 515, 293317.Google Scholar
Yue, P., Feng, J. J., Liu, C. & Shen, J. 2005 Diffuse-interface simulations of drop coalescence and retraction in viscoelastic fluids. J. Non-Newtonian Fluid Mech. 129, 163176.Google Scholar
Yue, P., Zhou, C. & Feng, J. J. 2006a A computational study of the coalescence between a drop and an interface in Newtonian and viscoelastic fluids. Phys. Fluids 18, 102102.Google Scholar
Yue, P., Zhou, C. & Feng, J. J. 2007 Spontaneous shrinkage of drops and mass conservation in phase-field simulations. J. Comput. Phys. 223, 19.Google Scholar
Yue, P., Zhou, C. & Feng, J. J. 2010 Sharp-interface limit of the Cahn–Hilliard model for moving contact lines. J. Fluid Mech. 645, 279294.Google Scholar
Yue, P., Zhou, C., Feng, J. J., Ollivier-Gooch, C. F. & Hu, H. H. 2006b Phase-field simulations of interfacial dynamics in viscoelastic fluids using finite elements with adaptive meshing. J. Comput. Phys. 219, 4767.Google Scholar
Zhang, J., Miksis, M. J. & Bankoff, S. G. 2006 Nonlinear dynamics of a two-dimensional viscous drop under shear flow. Phys. Fluids 18, 072106.Google Scholar
Zhou, C., Yue, P., Feng, J. J., Ollivier-Gooch, C. F. & Hu, H. H. 2010 3D phase-field simulations of interfacial dynamics in Newtonian and viscoelastic fluids. J. Comput. Phys. 229, 498511.Google Scholar