Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-30T23:40:30.378Z Has data issue: false hasContentIssue false

Morphology of oblique detonation waves in a stoichiometric hydrogen–air mixture

Published online by Cambridge University Press:  19 February 2021

Honghui Teng
Affiliation:
School of Aerospace Engineering, Beijing Institute of Technology, Beijing100081, PR China
Cheng Tian
Affiliation:
School of Aerospace Engineering, Beijing Institute of Technology, Beijing100081, PR China
Yining Zhang
Affiliation:
State Key Laboratory of Laser Propulsion and Application, Beijing Power Machinery Institute, Beijing100074, PR China
Lin Zhou*
Affiliation:
School of Aerospace Engineering, Beijing Institute of Technology, Beijing100081, PR China State Key Laboratory of Laser Propulsion and Application, Beijing Power Machinery Institute, Beijing100074, PR China
Hoi Dick Ng
Affiliation:
Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, QCH3G 1M8, Canada
*
Email address for correspondence: [email protected]

Abstract

Although the morphology of oblique detonation waves (ODWs) has been widely studied, it remains impossible to predict the wave systems in the initiation region, which is a critical component in promoting engine applications. Such wave systems are usually viewed as secondary ODWs or compression waves (CWs), introducing some structural ambiguities and contradictions with recent observations. In this study, ODWs are simulated numerically in a stoichiometric hydrogen–air mixture and their morphological features are analysed. To cover a wide range of flight conditions physically, the control parameters are the flight altitude $H_{0}$ and Mach number $M_{1}$ of an ODW-based engine. Numerical results reveal the morphological variations with respect to $H_{0}$ and $M_{1}$, within which two special wave systems arise. One wave system indicates that the CW might induce an abrupt transition, and the other indicates that the classical secondary ODW might evolve into a normal detonation wave, another illustration of the well-known ‘detonation-behind-shock’ wave configurations. To clarify the mechanism of wave system variation, a geometric analysis of two characteristic heights demonstrates that the wave system could be predicted from the viewpoint of CW convergence. Moreover, analysis of the induction zone Mach number, compared with the corresponding Chapman–Jouguet Mach number, provides a criterion for the normal detonation wave formation. These semi-theoretical approaches collectively enhance our understanding of the wave system physically.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexander, D.C., Sislian, J.P. & Parent, B. 2006 Hypervelocity fuel/air mixing in mixed-compression inlets of shcramjets. AIAA J. 44, 21452155.CrossRefGoogle Scholar
Arienti, M. & Shepherd, J.E. 2005 A numerical study of detonation diffraction. J. Fluid Mech. 529, 117146.CrossRefGoogle Scholar
Bdzil, J.B., Short, M. & Chiquete, C. 2020 Transients following the loss of detonation confinement. J. Fluid Mech. 886, A27.CrossRefGoogle Scholar
Burke, M.P., Chaos, M., Ju, Y., Dryer, F.L. & Klippenstein, S.J. 2012 Comprehensive $\text {H}_2/\text {O}_2$ kinetic model for high-pressure combustion. Intl J. Chem. Kinet. 44, 444474.CrossRefGoogle Scholar
Cambier, J.L., Adelman, H.G. & Menees, G. 1990 Numerical simulations of an oblique detonation wave engine. J. Propul. Power 6, 315323.CrossRefGoogle Scholar
Choi, J.Y., Kim, D.W., Jeung, I.S., Ma, F. & Yang, V. 2007 Cell-like structure of unstable oblique detonation wave from high-resolution numerical simulation. Proc. Combust. Inst. 31, 24732480.CrossRefGoogle Scholar
Choi, J.Y., Shin, E.J.R. & Jeung, I.S. 2009 Unstable combustion induced by oblique shock waves at the non-attaching condition of the oblique detonation wave. Proc. Combust. Inst. 32, 23872396.CrossRefGoogle Scholar
Dudebout, R., Sislian, J.P. & Oppitz, R. 1998 Numerical simulation of hypersonic shock-induced combustion ramjets. J. Propul. Power 14, 869879.CrossRefGoogle Scholar
Fang, Y., Zhang, Y., Deng, X. & Teng, H. 2019 a Structure of wedge-induced oblique detonation in acetylene-oxygen-argon mixtures. Phys. Fluids 31, 026108.Google Scholar
Fang, Y., Zhang, Z. & Hu, Z. 2019 b Effects of boundary layer on wedge-induced oblique detonation structures in hydrogen-air mixtures. Intl J. Hydrogen Energ. 44, 2342923435.CrossRefGoogle Scholar
Figueira da Silva, L.F. & Deshaies, B. 2000 Stabilization of an oblique detonation wave by a wedge: a parametric numerical study. Combust. Flame 121, 152166.CrossRefGoogle Scholar
Ghorbanian, K. & Sterling, J.D. 1996 Influence of formation processes on oblique detonation wave stabilization. J. Propul. Power 12, 509517.CrossRefGoogle Scholar
Iwata, K., Nakaya, S. & Tsue, M. 2017 Wedge-stabilized oblique detonation in an inhomogeneous hydrogen-air mixture. Proc. Combust. Inst. 36, 27612769.CrossRefGoogle Scholar
Jiang, Z. 2004 On dispersion-controlled principles for non-oscillatory shock-capturing schemes. Acta Mechanica Sin. 20, 115.Google Scholar
Kao, S. & Shepherd, J.E. 2008 Numerical solution methods for control volume explosions and ZND detonation structure. Tech. Rep. GALCIT Report FM2006.007. California Institute of Technology, Pasadena, California.Google Scholar
Khasainov, B., Presles, H.N., Desbordes, D., Demontis, P. & Vidal, P. 2005 Detonation diffraction from circular tubes to cones. Shock Waves 14, 187192.CrossRefGoogle Scholar
King, R.L. 1978 A computer version of the U.S. Standard Atmosphere, 1976. Tech. Rep. NASA-CR-150778. Science Applications, Inc.Google Scholar
Laguarda, L., Hickel, S., Schrijer, F.F.J. & van Oudheusden, B.W. 2020 Dynamics of unsteady asymmetric shock interactions. J. Fluid Mech. 888, A18.CrossRefGoogle Scholar
Li, C., Kailasanath, K. & Oran, E.S. 1993 Effects of boundary layers on oblique-detonation structures. AIAA Paper 1993-0450.CrossRefGoogle Scholar
Li, C., Kailasanath, K. & Oran, E.S. 1994 Detonation structures behind oblique shocks. Phys. Fluids 6, 16001611.CrossRefGoogle Scholar
Li, G., Zhang, G., Zhang, Y., Ji, L. & Gao, S. 2020 Influence of viscous boundary layer on initiation zone structure of two-dimensional oblique detonation wave. Aerosp. Sci. Technol. 104, 106019.CrossRefGoogle Scholar
Liepmann, H.W. & Roshko, A. 2001 Elements of Gas Dynamics. Dover Publications.Google Scholar
Liu, Y., Liu, Y.S., Wu, D. & Wang, J.P. 2016 Structure of an oblique detonation wave induced by a wedge. Shock Waves 26, 161168.CrossRefGoogle Scholar
Liu, Y., Wu, D., Yao, S. & Wang, J.P. 2015 Analytical and numerical investigations of wedge-induced oblique detonation waves at low inflow Mach number. Combust. Sci. Technol. 187, 843856.CrossRefGoogle Scholar
McBride, B.J., Zehe, M.J. & Gordon, S. 2002 NASA Glenn coefficients for calculating thermodynamic properties of individual species. Tech. Rep. NASA/TP-2002-211556. NASA Glenn Research Center, Cleveland.Google Scholar
Menees, G.P., Adelman, H.G. & Cambier, J.L. 1991 Analytical and experimental investigations of the oblique detonation wave engine concept. Tech. Rep. NASA-TM-102839. NASA Ames Research Center, Moffett Field, California.Google Scholar
Menikoff, R. & Shaw, M.S. 2011 Modeling detonation waves in nitromethane. Combust. Flame 158, 25492558.CrossRefGoogle Scholar
Miao, S., Zhou, J., Liu, S. & Cai, X. 2018 Formation mechanisms and characteristics of transition patterns in oblique detonations. Acta Astronaut. 142, 121129.CrossRefGoogle Scholar
Oppenheim, A.K., Laderman, A.J. & Urtiew, P.A. 1962 The onset of retonation. Combust. Flame 6, 193197.CrossRefGoogle Scholar
Powers, J.M. & Stewart, D.S. 1992 Approximate solutions for oblique detonations in the hypersonic limit. AIAA J. 30, 726736.CrossRefGoogle Scholar
Pratt, D.T., Humphrey, J.W. & Glenn, D.E. 1991 Morphology of standing oblique detonation waves. J. Propul. Power 7, 837845.CrossRefGoogle Scholar
Radulescu, M.I. 2018 A detonation paradox: why inviscid detonation simulations predict the incorrect trend for the role of instability in gaseous cellular detonations? Combust. Flame 195, 151162.CrossRefGoogle Scholar
Ren, Z., Wang, B., Xiang, G., Zhao, D. & Zheng, L. 2019 a Supersonic spray combustion subject to scramjets: progress and challenges. Prog. Aerosp. Sci. 105, 4059.CrossRefGoogle Scholar
Ren, Z., Wang, B., Xiang, G. & Zheng, L. 2018 Effects of the multiphase composition in a premixed fuel-air stream on wedge-induced oblique detonation stabilization. J. Fluid Mech. 846, 411427.CrossRefGoogle Scholar
Ren, Z., Wang, B., Xiang, G. & Zheng, L. 2019 b Numerical analysis of wedge-induced oblique detonations in two-phase kerosene-air mixtures. Proc. Combust. Inst. 37, 36273635.CrossRefGoogle Scholar
Short, M. & Quirk, J.J. 2018 High explosive detonation-confiner interactions. Annu. Rev. Fluid Mech. 50, 215242.CrossRefGoogle Scholar
Sislian, J.P., Schirmer, H., Dudebout, R. & Schumacher, J. 2001 Propulsive performance of hypersonic oblique detonation wave and shock-induced combustion ramjets. J. Propul. Power 17, 599604.CrossRefGoogle Scholar
Teng, H., Ng, H.D. & Jiang, Z. 2017 Initiation characteristics of wedge-induced oblique detonation waves in a stoichiometric hydrogen-air mixture. Proc. Combust. Inst. 36, 27352742.CrossRefGoogle Scholar
Teng, H., Ng, H.D., Li, K., Luo, C. & Jiang, Z. 2015 Evolution of cellular structures on oblique detonation surfaces. Combust. Flame 162, 470477.CrossRefGoogle Scholar
Teng, H.H. & Jiang, Z.L. 2012 On the transition pattern of the oblique detonation structure. J. Fluid Mech. 713, 659669.CrossRefGoogle Scholar
Teng, H.H., Jiang, Z.L. & Ng, H.D. 2014 Numerical study on unstable surfaces of oblique detonations. J. Fluid Mech. 744, 111128.CrossRefGoogle Scholar
Tian, C., Teng, H.H. & Ng, H.D. 2019 Numerical investigation of oblique detonation structure in hydrogen-oxygen mixtures with Ar dilution. Fuel 252, 496503.CrossRefGoogle Scholar
Valorani, M., Di Giacinto, M. & Buongiorno, C. 2001 Performance prediction for oblique detonation wave engines (ODWE). Acta Astronaut. 48, 211228.CrossRefGoogle Scholar
Verreault, J., Higgins, A.J. & Stowe, R.A. 2013 Formation of transverse waves in oblique detonations. Proc. Combust. Inst. 34, 19131920.CrossRefGoogle Scholar
Viguier, C., Gourara, A. & Desbordes, D. 1996 Onset of oblique detonation waves: comparison between experimental and numerical results for hydrogen-air mixture. Symp. (Intl) Combust. 26, 30233031.CrossRefGoogle Scholar
Wang, K., Teng, H., Yang, P. & Ng, H.D. 2020 Numerical investigation of flow structures resulting from the interaction between an oblique detonation wave and an upper expansion corner. J. Fluid Mech. 903, A28.CrossRefGoogle Scholar
Wang, T., Zhang, Y., Teng, H., Jiang, Z. & Ng, H.D. 2015 Numerical study of oblique detonation wave initiation in a stoichiometric hydrogen-air mixture. Phys. Fluids 27, 096101.CrossRefGoogle Scholar
Wolański, P. 2013 Detonative propulsion. Proc. Combust. Inst. 34, 125158.CrossRefGoogle Scholar
Yang, P., Ng, H.D. & Teng, H. 2019 a Numerical study of wedge-induced oblique detonations in unsteady flow. J. Fluid Mech. 876, 264287.CrossRefGoogle Scholar
Yang, P., Teng, H., Jiang, Z. & Ng, H.D. 2018 Effects of inflow mach number on oblique detonation initiation with a two-step induction-reaction kinetic model. Combust. Flame 193, 246256.CrossRefGoogle Scholar
Yang, P., Teng, H., Ng, H.D. & Jiang, Z. 2019 b A numerical study on the instability of oblique detonation waves with a two-step induction-reaction kinetic model. Proc. Combust. Inst. 37, 35373544.CrossRefGoogle Scholar
Yee, H.C., Kotov, D.V., Wang, W. & Shu, C.W. 2013 Spurious behavior of shock-capturing methods by the fractional step approach: problems containing stiff source terms and discontinuities. J. Comput. Phys. 241, 266291.CrossRefGoogle Scholar
Zhang, Y., Fang, Y., Ng, H.D. & Teng, H. 2019 Numerical investigation on the initiation of oblique detonation waves in stoichiometric acetylene-oxygen mixtures with high argon dilution. Combust. Flame 204, 391396.CrossRefGoogle Scholar
Zhang, Y., Zhou, L., Gong, J., Ng, H.D. & Teng, H. 2018 Effects of activation energy on the instability of oblique detonation surfaces with a one-step chemistry model. Phys. Fluids 30, 106110.Google Scholar