Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-08T08:29:57.281Z Has data issue: false hasContentIssue false

Modulation of near-wall turbulence in the transitionally rough regime

Published online by Cambridge University Press:  01 March 2019

Nabil Abderrahaman-Elena
Affiliation:
Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK
Chris T. Fairhall
Affiliation:
Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK
Ricardo García-Mayoral*
Affiliation:
Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK
*
Email address for correspondence: [email protected]

Abstract

Direct numerical simulations of turbulent channels with rough walls are conducted in the transitionally rough regime. The effect that roughness produces on the overlying turbulence is studied using a modified triple decomposition of the flow. This decomposition separates the roughness-induced contribution from the background turbulence, with the latter essentially free of any texture footprint. For small roughness, the background turbulence is not significantly altered, but merely displaced closer to the roughness crests, with the change in drag being proportional to this displacement. As the roughness size increases, the background turbulence begins to be modified, notably by the increase of energy for short, wide wavelengths, which is consistent with the appearance of a shear-flow instability of the mean flow. A laminar model is presented to estimate the roughness-coherent contribution, as well as the displacement height and the velocity at the roughness crests. Based on the effects observed in the background turbulence, the roughness function is decomposed into different terms to analyse different contributions to the change in drag, laying the foundations for a predictive model.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abderrahaman-Elena, N. & García-Mayoral, R. 2016 Geometry-induced fluctuations in the transitionally rough regime. J. Phys.: Conf. Ser. 708, 012009.Google Scholar
Anderson, W. 2016 Amplitude modulation of streamwise velocity fluctuations in the roughness sublayer: evidence from large-eddy simulations. J. Fluid Mech. 789, 567588.10.1017/jfm.2015.744Google Scholar
Beneddine, S., Sipp, D., Arnault, A., Dandois, J. & Lesshafft, L. 2016 Conditions for validity of mean flow stability analysis. J. Fluid Mech. 798, 485504.Google Scholar
Bradshaw, P. 2000 A note on critical roughness height and transitional roughness. Phys. Fluids 12 (6), 16111614.10.1063/1.870410Google Scholar
Breugem, W. P., Boersma, B. J. & Uittenbogaard, R. E. 2006 The influence of wall permeability on turbulent channel flow. J. Fluid Mech. 562, 3572.10.1017/S0022112006000887Google Scholar
Cheng, H. & Castro, I. P. 2002 Near wall flow over urban-like roughness. Boundary-Layer Meteorol. 104 (2), 229259.10.1023/A:1016060103448Google Scholar
Choi, H., Moin, P. & Kim, J. 1993 Direct numerical simulation of turbulent flow over riblets. J. Fluid Mech. 255, 503539.10.1017/S0022112093002575Google Scholar
Chung, D., Chan, L., MacDonald, M., Hutchins, N. & Ooi, A. 2015 A fast direct numerical simulation method for characterising hydraulic roughness. J. Fluid Mech. 773, 418431.10.1017/jfm.2015.230Google Scholar
Clauser, F. H. 1956 The turbulent boundary layer. Adv. Appl. Mech. 4, 151.10.1016/S0065-2156(08)70370-3Google Scholar
Colebrook, C. F. 1939 Turbulent flow in pipes, with particular reference to the transitional region between smooth and rough wall laws. J. Inst. Civil Engng 11, 133156.10.1680/ijoti.1939.13150Google Scholar
Colebrook, C. F. & White, C. M. 1937 Experiments with fluid friction in roughened pipes. Proc. R. Soc. Lond. A 161 (906), 367381.Google Scholar
Fadlun, E. A., Verzicco, R., Orlandi, P. & Mohd-Yusof, J. 2000 Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J. Comput. Phys. 161, 3560.10.1006/jcph.2000.6484Google Scholar
Fairhall, C. T., Abderrahaman-Elena, N. & García-Mayoral, R. 2019 The effect of slip and surface texture on turbulence over syperhydrophobic surfaces. J. Fluid Mech. 861, 88118.10.1017/jfm.2018.909Google Scholar
Ferziger, J. H. & Perić, M. 2002 Computational Methods for Fluid Dynamics, 3rd edn. Springer.10.1007/978-3-642-56026-2Google Scholar
Finnigan, J. 2000 Turbulence in plant canopies. Annu. Rev. Fluid Mech. 32, 519571.10.1146/annurev.fluid.32.1.519Google Scholar
Flack, K. A. & Schultz, M. P. 2010 Review of hydraulic roughness scales in the fully rough regime. Trans. ASME J. Fluids Engng 132, 041203.Google Scholar
Flack, K. A., Schultz, M. P. & Connelly, J. S. 2007 Examination of a critical roughness height for outer layer similarity. Phys. Fluids 19 (9), 095104.10.1063/1.2757708Google Scholar
Florens, E., Eiff, O. & Moulin, F. 2013 Defining the roughness sublayer and its turbulence statistics. Exp. Fluids. 54 (4), 1500.10.1007/s00348-013-1500-zGoogle Scholar
Flores, O. & Jiménez, J. 2010 Hierarchy of minimal flow units in the logarithmic layer. Phys. Fluids 22 (7), 071704.10.1063/1.3464157Google Scholar
García-Mayoral, R. & Jiménez, J. 2011a Drag reduction by riblets. Phil. Trans. R. Soc. Lond. A 369, 14121427.10.1098/rsta.2010.0359Google Scholar
García-Mayoral, R. & Jiménez, J. 2011b Hydrodynamic stability and breakdown of the viscous regime over riblets. J. Fluid Mech. 678, 317347.10.1017/jfm.2011.114Google Scholar
García-Mayoral, R. & Jiménez, J. 2012 Scaling of turbulent structures in riblet channels up to Re 𝜏 ≈ 550. Phys. Fluids 24 (10), 105101.10.1063/1.4757669Google Scholar
García-Mayoral, R., Gómez-de-Segura, G. & Fairhall, C. T. 2019 The control of near-wall turbulence through surface texturing. Fluid Dyn. Res. 51 (1), 011410.10.1088/1873-7005/aadfccGoogle Scholar
Ghisalberti, M. 2009 Obstructed shear flows: similarities across systems and scales. J. Fluid Mech. 641, 5161.10.1017/S0022112009992175Google Scholar
Gómez-de-Segura, G., Fairhall, C., Macdonald, M., Chung, D. & García-Mayoral, R. 2018a Manipulation of near-wall turbulence by surface slip and permeability. J. Phys.: Conf. Ser. 1001, 012011.Google Scholar
Gómez-de-Segura, G., Sharma, A. & García-Mayoral, R. 2018b Turbulent drag reduction using anisotropic permeable substrates. Flow, Turbul. Combust. 100 (4), 9951014.10.1007/s10494-018-9916-4Google Scholar
Hama, F. R. 1954 Boundary-layer characteristics for smooth and rough surfaces. Trans. Soc. Nav. Archit. Mar. Engrs 62, 333358.Google Scholar
Iaccarino, G. & Verzicco, R. 2003 Immersed boundary technique for turbulent flow simulations. Appl. Mech. Rev. 56 (3), 331.10.1115/1.1563627Google Scholar
Jackson, P. S. 1981 On the displacement height in the logarithmic velocity profile. J. Fluid Mech. 111, 1525.10.1017/S0022112081002279Google Scholar
Jelly, T. O., Jung, S. Y. & Zaki, T. A. 2014 Turbulence and skin friction modification in channel flow with streamwise-aligned superhydrophobic surface texture. Phys. Fluids 26, 095102.10.1063/1.4894064Google Scholar
Jiménez, J. 2004 Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36, 173196.10.1146/annurev.fluid.36.050802.122103Google Scholar
Jiménez, J. & Moin, P. 1991 The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225, 213240.10.1017/S0022112091002033Google Scholar
Jiménez, J., Uhlmann, M., Pinelli, A. & Kawahara, G. 2001 Turbulent shear flow over active and passive porous surfaces. J. Fluid Mech. 442, 89117.10.1017/S0022112001004888Google Scholar
Kamrin, K., Bazant, M. Z. & Stone, H. A. 2010 Effective slip boundary conditions for arbitrary periodic surfaces: the surface mobility tensor. J. Fluid Mech. 658, 409437.10.1017/S0022112010001801Google Scholar
Le, H. & Moin, P. 1991 An improvement of fractional step methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 92, 369379.10.1016/0021-9991(91)90215-7Google Scholar
Leonardi, S. & Castro, I. P. 2010 Channel flow over large cube roughness: a direct numerical simulation study. J. Fluid Mech. 651, 519539.10.1017/S002211200999423XGoogle Scholar
Ligrani, P. M. & Moffat, R. J. 1986 Structure of transitionally rough and fully rough turbulent boundary layers. J. Fluid Mech. 162, 6998.10.1017/S0022112086001933Google Scholar
Luchini, P. 1996 Reducing the turbulent skin friction. In Comput. Methods Appl. Sci. – Proc. 3rd ECCOMAS CFD Conf.. pp. 466470. Wiley.Google Scholar
Luchini, P. 2013 Linearized no-slip boundary conditions at a rough surface. J. Fluid Mech. 737, 349367.10.1017/jfm.2013.574Google Scholar
Luchini, P., Manzo, F. & Pozzi, A. 1991 Resistance of a grooved surface to parallel flow and cross-flow. J. Fluid Mech. 228, 87109.Google Scholar
Luminari, N., Airiau, C. & Bottaro, A. 2016 Drag-model sensitivity of Kelvin–Helmholtz waves in canopy flows. Phys. Fluids 28, 124103.10.1063/1.4971789Google Scholar
MacDonald, M., Chung, D., Hutchins, N., Chan, L., Ooi, A. & García-Mayoral, R. 2017 The minimal-span channel for rough-wall turbulent flows. J. Fluid Mech. 816, 542.10.1017/jfm.2017.69Google Scholar
MacDonald, M., Ooi, A., García-Mayoral, R., Hutchins, N. & Chung, D. 2018 Direct numerical simulation of high aspect ratio spanwise-aligned bars. J. Fluid Mech. 843, 126155.10.1017/jfm.2018.150Google Scholar
Marusic, I., McKeon, B. J., Monkewitz, P. A., Nagib, H. M., Smits, A. J. & Sreenivasan, K. R. 2010 Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys. Fluids 22 (6), 124.10.1063/1.3453711Google Scholar
Mathis, R., Hutchins, N. & Marusic, I. 2009 Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech. 628, 311337.10.1017/S0022112009006946Google Scholar
Mohd-Yusof, J. 1997 Combined immersed-boundary/B-spline methods for simulations of flow in complex geometries. In Annu. Res. Briefs Cent. Turbul. Res.. pp. 317327. NASA Ames and Standford University.Google Scholar
Nikuradse, J.1933 Laws of flow in rough pipes. NACA TM 1292.Google Scholar
Nordström, J., Mattsson, K. & Swanson, C. 2007 Boundary conditions for a divergence free velocity–pressure formulation of the Navier–Stokes equations. J. Comput. Phys. 225, 874890.10.1016/j.jcp.2007.01.010Google Scholar
Orlandi, P. & Leonardi, S. 2006 DNS of turbulent channel flows with two- and three-dimensional roughness. J. Turbul. 7 (53), N73.Google Scholar
Perot, B. 1993 An analysis of the fractional step method. J. Comput. Phys. 108, 5158.10.1006/jcph.1993.1162Google Scholar
Py, C., De Langre, E. & Moulia, B. 2006 A frequency lock-in mechanism in the interaction between wind and crop canopies. J. Fluid Mech. 568, 425449.10.1017/S0022112006002667Google Scholar
Raupach, M. R., Antonia, R. A. & Rajagopalan, S. S. 1991 Rough-wall turbulent boundary layers. Appl. Mech. Rev. 44, 125.10.1115/1.3119492Google Scholar
Raupach, M. R. & Shaw, R. H. 1982 Averaging procedures for flow within vegetation canopies. Boundary-Layer Meteorol. 22 (1), 7990.10.1007/BF00128057Google Scholar
Rayleigh, Lord 1879 On the stability, or instability, of certain fluid motions. Proc. Lond. Math. Soc. 1 (1), 5772.10.1112/plms/s1-11.1.57Google Scholar
Reynolds, W. C. & Hussain, A. K. M. 1974 The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments. J. Fluid Mech. 54, 263288.10.1017/S0022112072000679Google Scholar
Schlichting, H.1936 Experimental investigation of the problem of surface roughness. Tech. Rep..Google Scholar
Seo, J., García-Mayoral, R. & Mani, A. 2015 Pressure fluctuations in turbulent flows over superhydrophobic surfaces. J. Fluid Mech. 783, 448473.10.1017/jfm.2015.573Google Scholar
Sharma, A., Gomez-de Segura, G. & Garcia-Mayoral, R. 2017 Linear stability analysis of turbulent flows over dense filament canopies. In 10th International Symposium on Turbulence and Shear Flow Phenomena, TSFP 2017, vol. 2. Begel House.Google Scholar
Spalart, P. R. & McLean, J. D. 2011 Drag reduction: enticing turbulece, and then industry. Phil. Trans. R. Soc. Lond. A 369, 15561569.10.1098/rsta.2010.0369Google Scholar
Thakkar, M., Busse, A. & Sandham, N. D. 2018 Direct numerical simulation of turbulent channel flow over a surrogate for Nikuradse-type roughness. J. Fluid Mech. 837, R1.10.1017/jfm.2017.873Google Scholar
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press.Google Scholar
White, B. L. & Nepf, H. M. 2007 Shear instability and coherent structures in shallow flow adjacent to a porous layer. J. Fluid Mech. 593, 132.10.1017/S0022112007008415Google Scholar
Yang, X. I. A. & Meneveau, C. 2016 Large eddy simulations and parameterisation of roughness element orientation and flow direction effects in rough wall boundary layers. J. Turbul. 17 (11), 10721085.10.1080/14685248.2016.1215604Google Scholar
Yang, X. I. A., Sadique, J., Mittal, R. & Meneveau, C. 2016 Exponential roughness layer and analytical model for turbulent boundary layer flow over rectangular-prism roughness elements. J. Fluid Mech. 789, 127165.10.1017/jfm.2015.687Google Scholar
Zampogna, G. A., Pluvinage, F., Kourta, A. & Bottaro, A. 2016 Instability of canopy flows. Water Resour. Res. 52, 54215432.10.1002/2016WR018915Google Scholar
Zhang, C. & Chernyshenko, S. I. 2016 Quasisteady quasihomogeneous description of the scale interactions in near-wall turbulence. Phys. Rev. Fluids 1, 014401.10.1103/PhysRevFluids.1.014401Google Scholar