Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T19:27:31.810Z Has data issue: false hasContentIssue false

Models of energy loss from internal waves breaking in the ocean

Published online by Cambridge University Press:  11 December 2017

S. A. Thorpe*
Affiliation:
School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK

Abstract

The supply of energy to the internal wave field in the ocean is, in total, sufficient to support the mixing required to maintain the stratification of the ocean, but can the required rates of turbulent dissipation in mid-water be sustained by breaking internal waves? It is assumed that turbulence occurs in regions where the field of motion can be represented by an exact solution of the equations that describe waves propagating through a uniformly stratified fluid and becoming unstable. Two instabilities leading to wave breaking are examined, convective instability and shear-induced Kelvin–Helmholtz instability. Models are constrained by data representative of the mid-water ocean. Calculations of turbulent dissipation are first made on the assumption that all the waves representing local breaking have the same steepness, $s$, and frequency, $\unicode[STIX]{x1D70E}$. For some ranges of $s$ and $\unicode[STIX]{x1D70E}$, breaking can support the required transfer of energy to turbulence. For convective instability this proves possible for sufficiently large $s$, typically exceeding 2.0, over a range of $\unicode[STIX]{x1D70E}$, while for shear-induced instability near-inertial waves are required. Relaxation of the constraint that the model waves all have the same $s$ and $\unicode[STIX]{x1D70E}$ requires new assumptions about the nature and consequences of wave breaking. Examples predict an overall dissipation consistent with the observed rates. Further observations are, however, required to test the validity of the assumptions made in the models and, in particular, to determine the nature and frequency of internal wave breaking in the mid-water ocean.

Type
JFM Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alford, M. H. & Gregg, M. C. 2001 Near-inertial mixing: modulation of shear, strain and microstructure at low latitude. J. Geophys. Res. 106 (C8), 1694716968.CrossRefGoogle Scholar
Alford, M. H. & Pinkel, R. 2000 Observations of overturning in the thermocline: the context of ocean mixing. J. Phys. Oceanogr. 30, 805832.2.0.CO;2>CrossRefGoogle Scholar
Alford, M. H. & Zhao, Z. 2007 Global patterns of low-mode internal-wave propagation. Part I: energy and energy flux. J. Phys. Oceanogr. 37, 18291848.CrossRefGoogle Scholar
Arneborg, L. 2002 Mixing efficiencies in patchy turbulence. J. Phys. Oceanogr. 32, 14961506.2.0.CO;2>CrossRefGoogle Scholar
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Boguski, D. & Garrett, C. 1993 A simple model for the shear-induced decay of an internal solitary wave. J. Phys. Oceanogr. 23, 17671776.2.0.CO;2>CrossRefGoogle Scholar
Carr, M., Franklin, J., King, S. E., Davies, P. A., Grue, J. & Dritschel, D. G. 2017 The characteristics of billows generated by internal solitary waves. J. Fluid Mech. 812, 541577.CrossRefGoogle Scholar
Chalamalla, V. K. & Sarkar, S. M. 2015 Mixing, dissipation rate, and their overturn-based estimates in a near-bottom turbulent flow driven by internal tides. J. Phys. Oceanogr. 45, 19691987.CrossRefGoogle Scholar
Cuypers, Y., Le Vaillant, V., Bouruet-Aubertot, P., Vialard, J. & McPhaden, M. J. 2013 Tropical storm-induced near-inertial internal waves during the Cirene experiment: energy fluxes and impact on vertical mixing. J. Geophys. Res. Oceans 118, 358380.CrossRefGoogle Scholar
Davies Wykes, M. S. & Dalziel, S. B. 2014 Efficient mixing in stratified flows: experimental study of a Rayleigh–Taylor unstable interface within an otherwise stable stratification. J. Fluid Mech. 756, 10271057.CrossRefGoogle Scholar
Dillon, T. M. 1982 Vertical overturns: a comparison of Thorpe and Ozmidov length scales. J. Geophys. Res. 87, 96019613.CrossRefGoogle Scholar
Donelan, M., Longuet-Higgins, M. S. & Turner, J. S. 1972 Periodicity in whitecaps. Nature 239, 449451.CrossRefGoogle Scholar
Eden, C. & Olbers, D. 2014 An energy compartment model for propagation, nonlinear interaction, and dissipation of internal gravity waves. J. Phys. Oceanogr. 44, 20932106.CrossRefGoogle Scholar
Egbert, D. & Ray, R. D. 2001 Estimates of M2 tidal dissipation from TOPEX/Poseidon altimeter data. J. Geophys. Res. C10, 2247522502.CrossRefGoogle Scholar
Fringer, O. B. & Street, R. L. 2003 The dynamics of breaking progressive interfacial waves. J. Fluid Mech. 494, 319353.CrossRefGoogle Scholar
Gargett, A. E., Osborn, T. R. & Nasmyth, P. W. 1984 Local isotropy and the decay of turbulence in a stratified fluid. J. Fluid Mech. 144, 231280.CrossRefGoogle Scholar
Garrett, C. 1979 Mixing in the ocean interior. Dyn. Atmos. Oceans 3, 239265.CrossRefGoogle Scholar
Garrett, C. 2003 Internal tides and ocean mixing. Science 301, 18581859.CrossRefGoogle ScholarPubMed
Garrett, C. & Munk, W. 1972 Oceanic mixing by breaking internal waves. Deep-Sea Res. 19, 823832.Google Scholar
Gibson, C. H. 1980 Fossil temperature, salinity, and vorticity in the ocean. In Marine Turbulence (ed. Nihoul, J.), Elsevier Oceanography Series, pp. 221257. Elsevier.Google Scholar
Gill, A. E. 1982 Atmosphere-Ocean Dynamics. Academic Press.Google Scholar
Gregg, M. C. 1980 Microstructure patches in the thermocline. J. Phys. Oceanogr. 10 (6), 915943.2.0.CO;2>CrossRefGoogle Scholar
Gregg, M. C. 1998 Estimation and geography of diapycnal mixing in the stratified ocean. In Physical Processes in Lakes and Oceans (ed. Imberger, J.), pp. 305338. AGU Coastal and Estuarine Studies.Google Scholar
Gregg, C. & Sanford, T. D. 1988 The dependence of turbulent dissipation on stratification in a diffusively stable thermocline. J. Geophys. Res. 93, 1238112392.CrossRefGoogle Scholar
van Haren, H. & Gostiaux, L. 2010 A deep-ocean Kelvin–Helmholtz billow train. Geophys. Res. Lett. 37, L03605.CrossRefGoogle Scholar
van Haren, H. & Gostiaux, L. 2014 Characterising turbulent overturns in CTD-data. Dyn. Atmos. Oceans 66, 5876.CrossRefGoogle Scholar
van Haren, H. & Gostiaux, L. 2015 Distinguishing turbulent overturns in high-sampling-rate moored thermistor string observations. J. Mar. Res. 73, 1732.CrossRefGoogle Scholar
Hazel, P. 1972 Numerical studies of the stability of inviscid stratified shear flows. J. Fluid Mech. 51, 3961.CrossRefGoogle Scholar
Koop, C. G. & Browand, F. K. 1979 Instability and turbulence in a stratified fluid with shear. J. Fluid Mech. 93, 135159.CrossRefGoogle Scholar
Koop, C. G. & McGee, B. 1986 Measurements of internal gravity waves in a continuously stratified shear flow. J. Fluid Mech. 172, 453480.CrossRefGoogle Scholar
Kunze, E. & Sundermeyer, M. A. 2015 The role of intermittency in internal-wave shear dispersion. J. Phys. Oceanogr. 45, 29792990.CrossRefGoogle Scholar
Lamb, K. G. 2014 Internal wave breaking and dissipation mechanisms on the continental slope/shelf. Annu. Rev. Fluid Mech. 46, 231254.CrossRefGoogle Scholar
Lelong, M.-P. & Riley, J. J. 1991 Internal wave – vertical mode interactions in strongly stratified flows. J. Fluid Mech. 232, 119.CrossRefGoogle Scholar
Li, L., Smyth, W. D. & Thorpe, S. A. 2015 Destabilization of a stratified shear layer by ambient turbulence. J. Fluid Mech. 771, 115.CrossRefGoogle Scholar
Mashayek, A. & Peltier, W. R. 2012 The ‘zoo’ of secondary instabilities precursory to stratified shear flow turbulence transition. Part 2. Effects of stratification. J. Fluid Mech. 708, 4570.CrossRefGoogle Scholar
Melville, W. K., Veron, F. & White, C. J. 2002 The velocity field under breaking waves: coherent structure and turbulence. J. Fluid Mech. 454, 203233.CrossRefGoogle Scholar
Meyer, A., Sloyan, B. M., Polzin, K. L., Phillips, H. E. & Bindoff, N. L. 2015 Mixing variability in the Southern Ocean. J. Phys. Oceanogr. 45, 966987.CrossRefGoogle Scholar
Moum, J. M. 1996 Energy-containing scales of turbulence in the ocean thermocline. J. Geophys. Res. 101, 1409514109.CrossRefGoogle Scholar
Moum, J. M., Farmer, D. M., Smyth, W. D., Armi, L. & Vagle, S. 2003 Structure and generation of turbulence at interfaces strained by internal solitary waves propagating shoreward over the continental shelf. J. Phys. Oceanogr. 33, 20932112.2.0.CO;2>CrossRefGoogle Scholar
Mowbray, D. E. & Rarity, B. S. H. 1967 A theoretical and experimental investigation of the phase configuration of internal waves of small amplitude in a density stratified fluid. J. Fluid Mech. 28, 116.CrossRefGoogle Scholar
Munk, W., Warren, F. & Wunsch, C. 1981 Internal waves and small scale processes. In Evolution in Physical Oceanography, pp. 236263. MIT Press.Google Scholar
Munk, W. & Wunsch, C. 1998 Abyssal Recipes II; energetics of tidal and wind mixing. Deep-Sea Res. I 45, 19772010.CrossRefGoogle Scholar
Müller, P. 1984 Small-scale vertical motions. Internal gravity waves and small scale turbulence. In Proc. ‘Aha Huliko’a Hawiian Winter Workshop, Honolulu, HI, USA, pp. 249262. University of Hawaii at Manoa.Google Scholar
Nikurashin, M. & Ferrari, R. 2013 Overturning circulation driven by breaking internal waves in the deep ocean. Geophys. Res. Lett. 40, 31333137.CrossRefGoogle Scholar
Nikurashin, M. & Legg, S. 2011 A mechanism for local dissipation of internal tides generated at rough topography. J. Phys. Oceanogr. 41, 378395.CrossRefGoogle Scholar
Orlansk, I. & Bryan, K. 1969 Formation of the thermocline step structure by large-amplitude internal gravity waves. J. Geophys. Res. 74, 69756983.CrossRefGoogle Scholar
Osborn, T. R. 1980 Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr. 10, 8389.2.0.CO;2>CrossRefGoogle Scholar
Phillips, O. M. 1966 The Dynamics of the Upper Ocean. Cambridge University Press.Google Scholar
Phillips, O. M. 1985 Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J. Fluid Mech. 156, 505531.CrossRefGoogle Scholar
Pinkel, R. 2014 Vortical and internal wave shear and strain. J. Phys. Oceanogr. 20702092.CrossRefGoogle Scholar
Pizzo, N. E., Deike, L. & Melville, W. K. 2016 Current generation by deep-water breaking waves. J. Fluid Mech. 803, 275291.CrossRefGoogle Scholar
Pizzo, N. E. & Melville, W. K. 2013 Vortex generation by deep-water breaking waves. J. Fluid Mech. 734, 198218.CrossRefGoogle Scholar
Pizzo, N. E. & Melville, W. K. 2016 Wave modulation: the geometry, kinematics and dynamics of surface-wave packets. J. Fluid Mech. 803, 292312.CrossRefGoogle Scholar
Planella Morato, J., Roget, E. & Lozovataky, 2011 Statistics of microstructure patchiness in a stratified lake. J. Geophys. Res. 116, C10035.Google Scholar
Polzin, K. L., Toole, J. M., Ledwell, J. R. & Schmitt, R. W. 1997 Spatial variability of turbulent mixing in the abyssal ocean. Science 276, 9396.CrossRefGoogle ScholarPubMed
Rapp, R. J. & Melville, W. K. 1990 Laboratory measurements of deep-water breaking waves. Phil. Trans. R. Soc. Lond. A 331, 735800.Google Scholar
St Laurent, L. C., Simmons, H. L. & Jayne, S. R. 2002 Estimating tidally driven mixing in the deep ocean. Geophys. Res. Lett. 29 (23), 2106.CrossRefGoogle Scholar
Salehipour, H., Caulfield, C. P. & Peltier, W. R. 2016 Turbulent mixing due to Holmboe wave instability at high Reynolds number. J. Fluid Mech. 803, 591621.CrossRefGoogle Scholar
Salehipour, H., Peltier, W. R. & Mashayek, A. 2015 Turbulent diapycnal mixing in stratified shear flows: the influence of Prandtl number on mixing efficiency at high Reynolds number. J. Fluid Mech. 773, 178223.CrossRefGoogle Scholar
Scotti, A. 2015 Biases in Thorpe-scale estimates of turbulent dissipation. Part II: energetics arguments and turbulence simulations. J. Phys. Oeanogr. 45, 2552–2543.Google Scholar
Smyth, W. D. & Moum, J. N. 2012 Ocean mixing by Kelvin–Helmholtz instability. Oceanography 25 (2), 140149.CrossRefGoogle Scholar
Smyth, W. D., Moum, J. N. & Caldwell, D. R. 2001 The efficiency of mixing in turbulent patches: inferences from direct simulations and microstructure observations. J. Phys. Oceanogr. 31, 19691992.2.0.CO;2>CrossRefGoogle Scholar
Smyth, W. D. & Winters, K. B. 2003 Turbulence and mixing in Holmboe waves. J. Phys. Oceanogr. 33, 694711.2.0.CO;2>CrossRefGoogle Scholar
Smyth, W. D., Zavialov, P. O. & Moum, J. N. 1997 Decay of turbulence in the upper ocean following sudden isolation from surface forcing. J. Phys. Oeanogr. 27, 810822.2.0.CO;2>CrossRefGoogle Scholar
Thorpe, S. A. 1968a On the shape of progressive internal waves. Phil. Trans. R. Soc. Lond. A 263, 563614.Google Scholar
Thorpe, S. A. 1968b A method of producing a shear flow in a stratified fluid. J. Fluid Mech. 32, 693704.CrossRefGoogle Scholar
Thorpe, S. A. 1969 Experiments on the instability of stratified shear flows: immiscible fluids. J. Fluid Mech. 39, 2548.CrossRefGoogle Scholar
Thorpe, S. A. 1971 Experiments on the instability of stratified shear flows: miscible fluids. J. Fluid Mech. 46 (2), 299319.CrossRefGoogle Scholar
Thorpe, S. A. 1973 Experiments on instability and turbulence in a stratified shear flow. J. Fluid Mech. 61, 731751.CrossRefGoogle Scholar
Thorpe, S. A. 1977 Turbulence and mixing in a Scottish Loch. Phil. Trans. R. Soc. Lond. A 286, 125181.Google Scholar
Thorpe, S. A. 1981 An experimental study of critical layers. J. Fluid Mech. 103, 321344.CrossRefGoogle Scholar
Thorpe, S. A. 1987 Current and temperature variability on the Continental Slope. Phil. Trans. R. Soc. Lond. A 323, 471517.Google Scholar
Thorpe, S. A. 1994a Statically unstable layers produced by overturning internal gravity waves. J. Fluid Mech. 260, 333350.CrossRefGoogle Scholar
Thorpe, S. A. 1994b The stability of statically unstable layers. J. Fluid Mech. 260, 315331.CrossRefGoogle Scholar
Thorpe, S. A. 1999a On internal wave groups. J. Phys. Oceanogr. 29, 10851095.2.0.CO;2>CrossRefGoogle Scholar
Thorpe, S. A. 1999b A note on the breaking of internal waves in the ocean. J. Phys. Oceanogr. 29, 24332441.2.0.CO;2>CrossRefGoogle Scholar
Thorpe, S. A. 2005 The Turbulent Ocean. Cambridge University Press.CrossRefGoogle Scholar
Thorpe, S. A. 2010a The relation between the duration and shape of internal wave groups. J. Mar. Res. 68 (1), 6395.CrossRefGoogle Scholar
Thorpe, S. A. 2010b Breaking internal waves and turbulent dissipation. J. Mar. Res. 68 (6), 851880.CrossRefGoogle Scholar
Thorpe, S. A., Smyth, W. D. & Li, L. 2013 The effect of small viscosity and diffusivity on the marginal stability of stably stratified shear flows. J. Fluid Mech. 731, 461476.CrossRefGoogle Scholar
Thorpe, S. A. & Umlauf, L. 2002 Internal gravity wave frequencies and wavenumbers from single point measurements over a slope. J. Mar. Res. 60, 699723.CrossRefGoogle Scholar
Troy, C. D. & Koseff, J. R. 2005 The instability and breaking of long internal waves. J. Fluid Mech. 543, 107136.CrossRefGoogle Scholar
Turner, J. 1973 Buoyancy Effects in Fluids, p. 367. Cambridge University Press.CrossRefGoogle Scholar
Voropayev, S. I., Afanasyev, Yu. D. & Filippov, I. A. 1991 Horizontal jets and vortex dipoles in a stratified fluid. J. Fluid Mech. 227, 543566.CrossRefGoogle Scholar
Waterhouse, A. F., MacKinnon, J. A., Nash, J. D., Alford, M. H., Kunze, E., Simmons, H. L., Polzin, K. L., St Laurent, L. C., Sun, O. M., Pinkel, R. et al. 2014 Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr. 44, 18541872.CrossRefGoogle Scholar
Woods, J. D. 1968 Wave induced shear instability in the summer thermocline. J. Fluid Mech. 32, 791800.CrossRefGoogle Scholar
Wunsch, C. & Ferrari, R. 2004 Vertical mixing, energy and the general circulation of the oceans. Annu. Rev. Fluid Mech. 36, 281314.CrossRefGoogle Scholar
Yih, C.-S. 1960 Gravity waves in a stratified fluid. J. Fluid Mech. 8 (4), 481508.CrossRefGoogle Scholar
Zhang, S. & Alford, M. H. 2015 Instabilities in non-linear internal waves on the Washington continental shelf. J. Geophys. Res. Oceans 120, 52725283.CrossRefGoogle Scholar